Episode 050: Tallest Animals

We’re discovering which animals are the tallest this week! This episode includes our first dinosaur!

Sauroposeidon proteles:

Giraffes:

Bop bop bop have at thee!

Paraceratherium (I couldn’t find one that I liked so I drew one, along with a giraffe and ostrich to scale):

Ostrich running:

I SAID DON’T @ ME

A fine day at the ostrich races. I could not make this stuff up if I tried:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re looking at tall animals. Is the giraffe the tallest mammal that’s ever lived? Is the ostrich the tallest bird? And what about tall dinosaurs?

I don’t talk about dinosaurs much in this podcast because there are so many good podcasts devoted specifically to dinosaurs. I recommend I Know Dino. It’s family friendly and goes over the latest dinosaur news without talking down to listeners or dumbing down the information.

Four-footed animals are usually measured at the shoulder, since some animals hold their heads low, like bison, while others hold their heads high, like horses. But we’re talking about tall animals today, and that includes animals with long necks. So the measurements here are all from head to toe, with the head and neck held in its natural standing position.

Let’s start with the real biggie, the tallest dinosaur ever found.

In 1994 a guy named Bobby Cross noticed some fossils weathering out of the ground at the Oklahoma correctional facility where he worked as a dog trainer. As he always did when he found fossils, he called the Oklahoma Museum of Natural History. They sent a team to take a look. The team found four vertebrae, but they were just so big—around four feet long each, or 120 cm—that at first they thought they must be fossilized tree trunks.

Sauroposeidon proteles was probably closely related to Brachiosaurus, but was even bigger and taller. Sauroposeidon stood 60 feet tall, or 18 meters, and its neck alone was 39 feet long, or 12 meters. Its body and legs were relatively short and stocky. We don’t have a complete skeleton, just the four vertebrae found in southeastern Oklahoma, and a few vertebrae from two other individuals found in Montana and Texas. A trail of giant footprints in Texas may be a Sauroposeidon track too. But for sauropods, neck vertebrae are the most valuable fossils because they tell so much about the animal.

Sauroposeidon’s neck bones were massive, but they were lighter than they look due to tiny air sacs in the bones, like those in bird bones. The air sacs in bird bones actually contain air that flows through the lungs, called pneumatic bones, which provides the bird with more oxygen. A CT scan of the Sauroposeidon fossils—at least the portions of the fossils that would actually fit in the CT scanner—revealed that sauroposeidon’s vertebrae were constructed in the same way that bird bones are. We know that pterosaurs and theropods had pneumatic bones, so it’s not too surprising that at least some sauropods did too.

Sauroposeidon lived around 110 million years ago, during the Mesozoic era, specifically during the early to mid Cretaceous. The sea level was much higher then than it is now, so Sauroposeidon lived near the coast. It ate plants, and like many birds, it also swallowed stones to help it digest those plants, called gastroliths. Paleontologists have found lots of sauropod gastroliths associated with fossil animals. Unlike mammals, which chew their food before swallowing, sauropods swallowed it whole and the plant material was broken up in a stomach or gizzard-like structure. That’s why its head is so small relative to its body, and how it could eat enough plants to keep such an enormous body going. It probably ate literally a ton of food every single day.

We know a lot about sauropods, and since sauroposeidon appears to be structurally typical of other sauropods, just really big, it’s a safe bet to assume it was like other sauropods in many ways. It probably nested in groups and laid about two dozen eggs at a time in big nests on the ground. We don’t have any sauroposeidon eggs, but they probably wouldn’t have been all that big, maybe about the size of a football. Babies would have grown rapidly and were full grown in ten to twenty years. Sauroposeidon migrated in herds throughout the year, traveling from nesting grounds to new grazing grounds. While it lived near the ocean, it would have had to be careful about walking on soft ground. An animal that tall and heavy can get mired in mud easily. Paleontologists have actually found fossils of sauropods that died standing up, unable to climb out of a muddy hole after sinking in soft ground.

Giraffes are the tallest living animals today, with the tallest recorded giraffe, a male, measuring 19.3 feet, or 5.88 meters. That’s pretty darn tall, about 1/3 the height of sauroposeidon. Giraffes are related to deer and cattle, and live in the savannahs and forests of Africa, where they eat tree leaves that are much too high off the ground for other animals to reach. Female giraffes and their young make up loose groups, while males form groups of their own. While giraffes can kick hard enough to kill lions, when males fight over females, they use their necks. A male will swing its head at another male, and the two will tussle back and forth bopping necks together. As a result, male giraffes have thicker, stronger necks than females. Males are also usually taller than females.

The giraffe not only has a long neck and long legs, it has a long tongue that it uses to grab leaves that are juuuust too far away. The tongue is about 18 inches long, or 45 cm. A giraffe at Knoxville Zoo licked my hair once. The giraffe’s upper lip is also prehensile, and is hairy as a protection from thorns. Because of all the thorns it encounters, giraffe skin is surprisingly tough. The giraffe has large eyes that give it good vision, and it also has keen hearing and smell. It can close its nostrils to protect them from dust, sand, insects, and—you guessed it—thorns. So many thorns. And giraffe fur contains natural parasite repellents, which also makes giraffes smell funny.

All this is pretty awesome, but we’re not done with giraffe awesomeness. Giraffes have skin-covered horns called ossicones. Females and males both have ossicones, although males also have a median lump at the front of the skull that’s not exactly an ossicone but is sort of like one. Some females also have this median lump. Ossicones are made of cartilage that has ossified, or turned boney, and they’re covered in skin and hair, although since males use their ossicones in necking fights, they tend to rub all the hair off and have bald ossicones.

The only other animal alive today that has ossicones is the okapi, a close relative of the giraffe, but giraffe ancestors once had all kinds of weird ossicones. Xenokeryx amidalae, for instance, which lived about 16 million years ago in what is now Spain, had two ossicones over its eyes, and a third sticking up from the back of its head that was T-shaped. The name amidalae comes from the character Padme Amidala in Star Wars: The Phantom Menace, if you remember that weirdly shaped headdress she wore.

Because giraffes are so tall, they have some physical adaptations that are unique among mammals living today. A giraffe has the same number of neck bones as all other mammals except sloths and manatees, which are weird, but the vertebrae are much longer than in other mammals, almost a foot long, or 28 cm. The giraffe can also tilt its head right back until it’s just about in line with the back of the neck. I’m picturing everyone listening tilting their heads back right now, and hopefully you notice how the back of your neck curves when you look up. Also, please don’t wreck your car because you’re looking up while driving. The giraffe’s circulatory system is really unusual. Its heart is enormous and beats around 150 times per minute. The jugular veins, which are the big veins that carry blood up the neck to the brain, have valves that keep blood from running backwards when a giraffe lowers its head to drink.

Giraffes can walk, and giraffes can run, but they don’t have any other gaits. They can’t trot or canter, for instance. Even humans have more than two gaits, because we can skip. Despite its height, a giraffe can really move. It can run over 30 miles per hour, or about 50 km per hour, and keep it up for several miles. It has cloven hooves. Because a giraffe’s body is so heavy and its legs so long and thin, it has specialized ligament structures in its legs that keep them from collapsing. Horses also have this structure, which also helps the animal sleep while standing.

Oh, and the giraffe doesn’t eat leaves all the time. It spends a lot of the day just standing around chewing its cud.

There used to be a mammal that stood almost as tall as the giraffe at the shoulder. Paraceratherium orgosensis went extinct around 23 million years ago, and it’s not even related to the giraffe. It’s a member of the rhinoceros family. Like sauroposeidon, we don’t have a complete skeleton of paraceratherium, so its size is an estimate based on the proportions of closely related animals whose sizes we do know. It probably stood 18 feet high at the shoulder, or 5.5 meters, and while its neck was probably around 7 feet long, or a little over 2 meters, it probably held it forward like a rhino instead of up like a giraffe, so it didn’t add much to the animal’s overall height.

In episode 32 we learned about the giant moa, a flightless bird that once lived in New Zealand. It was probably the tallest bird that ever lived, with big females 12 feet tall, or 3.6 meters. But the tallest living bird is the ostrich. It also lives in Africa and is famous for being flightless and for being able to run really fast. In fact, it’s not only the tallest bird alive, it’s the fastest. It can run over 40 miles per hour, or about 70 km per hour, and it uses its large wings as rudders and even to help it brake. With its head raised, a big ostrich can be nine feet tall, or 2.8 meters.

There are a lot of differences between ostriches and most other birds. Most birds have four toes, for instance. The ostrich has two, one large toe with a hoof-like nail, and a smaller outer toe with no nail at all. All other living birds secrete urine and feces together, but the ostrich secretes them separately the way mammals do. And while most male birds don’t have a penis, the male ostrich does. And the ostrich has a double kneecap. Not only is that unique to birds, it’s unique to everything. No other animal known, living or extinct, has a double kneecap. Researchers have no idea what it’s for, although one hypothesis is that it allows a running ostrich to extend its legs farther, and another hypothesis is that it might protect tendons in the bird’s leg.

The ostrich eats plants, seeds, and sometimes insects. Like Sauroposeidon and many other dinosaurs and birds, the ostrich swallows small rocks and pebbles to help digest its food in its gizzard. The gizzard contracts, smashing the gastroliths and plants together to help break up the plant material the way mammals would chew it.

Ostrich eggs are the biggest laid by any living bird, about six inches long, or 15 cm. Females lay their eggs in a communal nest.

Ostriches are farmed like big chickens, for their feathers, meat, and skin for leather. Ostriches are also sometimes ridden and raced with special saddles and bridles. But ostriches aren’t easy birds to manage. They can be aggressive, and they can kill a human with one kick.

To wrap things back around to dinosaurs, some researchers think many fast-running dinosaurs used their feathered forelimbs the way ostriches use their wings, to help maneuver and possibly to help keep unfeathered portions of the body warm at night. During the day, when it’s hot, ostriches keep their wings raised so that their unfeathered upper legs can release heat into the atmosphere, but at night they cover their upper legs to retain heat. It’s just another link between birds and their long-distant ancestors, the dinosaurs.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 049: The Brantevik Eel and Friends

This week’s episode is about some interesting eels, including the Brantevik eel.

A European eel:

A leptocephalus, aka an eel larva:

A moray eel. It has those jaws you can see and another set of jaws in its throat:

Episode transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week, we’re going to learn about the Brantevik eel and some other eels, including an eel mystery.

The Brantevik eel is an individual European eel, not a separate species. Its friends knew it as Åle, which I’ve probably misprounounced, so I’m nicknaming it Ollie. So what’s so interesting about Ollie the eel?

First, let’s learn a little bit about the European eel in general to give some background. It’s endangered these days due to overfishing, pollution, and other factors, but it used to be incredibly common. It lives throughout Europe, from the Mediterranean to Iceland, and has been a popular food for centuries.

The European eel hatches in the ocean into a larval stage that looks sort of like a transparent flat tadpole, shaped roughly like a leaf. Over the next six months to three years, the larvae swim through the ocean currents, closer and closer to Europe, feeding on microscopic jellyfish and plankton. Toward the end of this journey, they grow into their next phase, where they resemble eels instead of tadpoles, but are mostly transparent. They’re called glass eels at this point. The glass eels make their way into rivers and other estuaries and slowly migrate upstream. Once a glass eel is in a good environment it metamorphoses again into an elver, which is basically a small eel. As it grows it gains more pigment until it’s called a yellow eel. Over the next decade or two it grows and matures, until it reaches its adult length—anywhere from two to five feet, or 60 cm to 1.5 meters. When it’s fully mature, its belly turns white and its sides silver, which is why it’s called a silver eel at this stage. Silver eels migrate more than 4,000 miles, or 6500 km, back to the Sargasso Sea to spawn, lay eggs, and die.

One interesting thing about the European eel is that during a lot of its life, it has no gender. Its gender is determined only when it grows into a yellow eel, and then it’s mostly determined by environmental factors, not genetics.

Until the late 19th century, everyone thought these different stages—larva, glass eel, elver, yellow eel, and silver eel—were all separate animals. No one knew how or even if eels reproduced. The ancient Greeks thought eels were a type of worm that appeared spontaneously from rotting vegetation. Some people thought eels mated with snakes or some types of fish. By the 1950s the eel’s life cycle was more or less understood, but many researchers thought the European eels never made it to the Sargasso Sea to spawn. It was just too far, so they thought the eels that arrived in Europe were all larvae of the American eel, which is almost identical in appearance to the European eel. The Sargasso Sea is off the coast of the Bahamas, so the American eel doesn’t have nearly as far to travel. These days we know from DNA studies that the American and European eels are different species. The European eel is just a world-class swimmer.

European eels are nocturnal and may live in fresh water, brackish water, or sometimes they remain in the ocean and live in salt water, generally in harbors and shallows. They eat anything they can catch, from fish to crustaceans, from insect larvae to dead things, and on wet nights they’ll sometimes emerge from the water and slide around on land eating worms and slugs. Many populations don’t eat at all during the winter.

Now, back to the Brantevik eel. Brantevik is a tiny fishing village in Sweden. In 1859, an eight-year-old boy named Samuel Nilsson caught an eel and released it into his family’s well to eat insect larvae and other pests. This was a common practice at the time when water wasn’t treated, so the fewer creepy-crawlies in the water, the better.

And there the eel stayed. Ollie got famous over the years, at least in Sweden. Its 100th well anniversary was celebrated in 1959, and children’s books and even movies featured it. But in summer of 2014, Ollie died. Its well is now on the property of Tomas Kjellman, whose family bought the cottage and its well in 1962. Everyone knew about the resident eel, which the family treated as something of a pet. In fact, they discovered it was dead when they opened the well’s cover to show the eel to some visiting friends.

Ollie’s remains were removed from the well and shoved in the family’s freezer, and later sent to be analyzed at the Swedish University of Agricultural Science’s Institute of Freshwater Research. That analysis confirmed that Ollie was over 150 years old.

In the wild, European eels don’t usually live longer than twenty years, and ten years is more likely. But in captivity, where eels don’t spawn, they can live a long time. A female European eel named Putte lived over 85 years in an aquarium at Halsinborgs Museum in Sweden.

What most people don’t know is that Ollie wasn’t alone. Another eel still lives in the well and is doing just fine, but it’s younger, only about 110 years old.

The larvae of European eels are small, only about three inches at the most, or 7.5 cm. Even conger eel larvae are small, only 4 inches long, or 10 cm, and conger eels can grow 10 feet long, or 3 meters. But on January 31, 1930, a Danish research ship caught an eel larva 900 feet deep off the coast of South Africa—and that larva was six feet 1.5 inches long, or 1.85 meters.

Scientists boggled at the thought that this six-foot eel larva might grow into an eel more than 50 feet long, or 15 meters, raising the very real possibility that this unknown eel might be the basis of many sea serpent sightings.

The larva was preserved and has been studied extensively. In 1958, a similar eel larva was caught off New Zealand. It and the 1930 specimen were determined to belong to the same species, which was named Leptocephalus giganteus. Leptocephalus, incidentally, is a catchall genus for all eel larvae, which can be extremely hard to tell apart.

In 1966 two more of the larvae were discovered in the stomach of a western Atlantic lancet fish. They were much smaller than the others, though—only four inches and eleven inches long, or 10 cm and 28 cm. Dr. David G. Smith, an ichthyologist at Miami University, determined that the eel larvae were actually not true eels at all, but larvae of a spiny eel. Deep-sea spiny eels are fish that look like eels but they’re not closely related. And while spiny eels do have a larval form that resembles that of a true eel, they’re much different in one important way. Spiny eel larvae grow larger than the adults, then shrink when they develop into their mature form.

So the six-foot eel larvae, if it had lived, would have eventually developed into a spiny eel no more than six feet long itself at the most, and probably shorter.

More recent research has called Dr. Smith’s findings into question, and many scientists today consider L. giganteus to be the larvae of a short-tailed eel, which is a true eel—but not a type that grows much larger than its larvae. So either way, the adult form would probably not be much longer than a conger eel.

But…we still don’t have an adult. So there’s still a possibility that a very big deep-living marine eel is swimming around in the world’s oceans right now.

The longest known eel is the slender giant moray, which can reach 13 feet in length, or 4 meters. Morays are interesting eels for sure. They live in the ocean, especially around coral reefs, and have two sets of jaws, their regular jaws with lots of hooked teeth, and a second set in the throat that are called pharyngeal jaws, which also have teeth. The moray uses the second set of jaws to help grab and swallow prey that might otherwise wriggle out of its mouth. The moray has a strong bite and doesn’t see very well, although its sense of smell is excellent. This occasionally causes problems for divers who think it would be fun to feed an eel and end up with a finger bitten off. Don’t feed the eels, okay? Not only that, but a moray can’t release its bite even if it’s dead, so if one bites a diver, someone has to pry the eel’s jaws open before the bite can be treated. And as if all that wasn’t warning enough to not feed wild animals, and frankly just stay out of the water entirely, research suggests that some morays are venomous. Oh, and the giant moray sometimes hunts with a fish called the roving coralgrouper, which grows to some four feet long, or 120 cm, which is a rare example of interspecies cooperative hunting.

Some people believe that at least some sightings of the Loch Ness monster can be attributed to eels—European eels, in this case. An eel can’t stick its head out of the water like Nessie is supposed to do, but it does sometimes swim on its side close to the water’s surface, which could result in sightings of a string of many humps undulating through the water. But while eels do live in and around Loch Ness, it’s unlikely that any European eel would grow much larger than around five feet, or 1.5 meters. Still, you never know. Loch Ness is the right habitat for an eel to grow to its maximum size, and while we have learned a lot about eels in general, and the European eel in particular, since Ollie was released into a well in Brantevik, we certainly don’t know everything about them.

One last note about eel larvae. Occasionally on facebook and other social media, well-meaning people will share warnings about a nearly invisible wormlike parasite that can be found in drinking water, with pictures of, you guessed it, eel larvae. Eel larvae are not parasites, are not found in fresh water at all, and even if you did accidentally swallow one, you’d just digest it and get a little protein out of the bargain. So you don’t need to worry about those clickbait warnings, the eels do.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 047: Strange Horses

It’s the last episode of 2017 and we’re going out in style, learning about some unusual horses!

A Przewalski’s horse PHOTO TAKEN BY ME AT HELSINKI ZOO I cropped out as many poops as I could:

A Heck horse, also sometimes called a tarpan. Photo taken by *squints* Klaus Rudloff in Berlin:

A Moyle breed horse with a bossed forehead:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about an animal I’ve been bonkers crazy about since I was a kid, the horse. But not just regular horses. We’re going to learn about some strange and little-known horses, the best kind of all.

All domestic horses are the same subspecies, Equus ferus caballus, even though the various breeds may look very different. Even mustangs and other populations of wild horses—more properly called feral horses—are the same subspecies. Feral just means a domestic animal that lives like a wild animal, like a stray dog. Only one truly wild horse remains these days, Przewalski’s [pzha-VALski’s] horse, Equus ferus przewalskii. I’ve been pronouncing it Perzwalski’s horse my whole life until today. So let’s start the episode by talking about that one.

Przewalski’s horse is native to the steppes of central Asia, especially Mongolia. It’s currently considered a subspecies of horse, but some researchers think it should be its own species. It went extinct in the wild in 1969. Fortunately, in 1900 15 of the horses had been captured and sold to various zoos. Some of the pairs reproduced, but by 1945, only 13 of the descendants remained. Of those 13, two were hybrids, one of them with a domestic horse, one of them with a tarpan. More about tarpans in a minute. Nine of the 13 were used in a careful breeding program, which was so successful that by 1992, Przewalski’s horse started to be reintroduced to the wild.

I’ve seen Przewalski’s horses, by the way. They had some in the Helsinki Zoo. Check the show notes for a picture taken by me and not swiped by me off the internet.

Przewalski’s horse is stockier than domestic horses, dun in color with a pale belly, with a short, erect mane. The legs are frequently faintly striped. The average horse stands about 13 hands high at the withers, which is the shoulder hump, or four feet four inches, or 132 cm. Its social structure is pretty much the same as the domestic horse’s. It lives in bands consisting of a group of mares and their young, and a stallion that leads the band to grazing areas and water while keeping watch for danger. A solitary stallion may sometimes challenge a stallion with a band of mares, which leads to a fight, which is pretty much the basis of 80% of the horse stories I read as a kid. So exciting.

So what about the tarpan? It was also called the Eurasian wild horse, and it went extinct—for good, unfortunately—in 1918 at the very latest, but probably much earlier. Its scientific name is Equus ferus ferus, and it’s probably the wild horse that gave rise to the modern domesticated horse. But we don’t know for sure, because we don’t know for sure that the tarpans alive in the 18th and 19th centuries were even real tarpans. They might have been hybrids of local domestic horses and Przewalski’s horses, or just feral domestic horses.

We do know that wild horses lived throughout Europe and parts of Asia during the Pleistocene. We have cave paintings 30,000 years old that are so good, scientists can determine a lot about the wild horse’s conformation and coat patterns and colors. We know our ancestors killed and ate horses long before anyone realized how useful it would be to tame such a strong animal and let it do the hard tasks of pulling carts and plows. The horse was domesticated about 6,000 years ago in various places at different times across Eurasia, and it’s possible that different subspecies of horse were domesticated, of which the tarpan was one. But we’re not sure how many subspecies of wild horse there were. We know about Przewalski’s horse since it’s still around, and we know a fair bit about the tarpan because it survived well into modern times. There were probably others, including what might be a type of tarpan that lived in forests.

There’s an interesting etymological fact that might point to the forest tarpan as a distinct type of wild horse. This comes from Willy Ley’s marvelous book, The Lungfish, the Dodo, and the Unicorn, which I’ve read numerous times since I was a kid. A lot of the information is dated since it was first published in the 1940s, but it was cutting edge at the time. Also, the book was already old when I was a kid. I’m not that old. Anyway, Ley writes that there was an unusual Bavarian insult used when someone in southern Germany wanted to call someone else stupid. In other parts of German-speaking Europe, a stupid person is called an Esel, or donkey. But the Bavarian term is Waldesel, which means forest donkey. Ordinary donkeys are called Steinesel, or rock donkey. So some researchers think, or thought 80 years ago, that the Waldesel referred to the forest tarpan. It was supposed to be gray with a black stripe down the spine called an eel stripe, and like other wild horses had a big, donkey-like head.

At some point, when horses were fully domesticated, the wild horses became a pest. They stole domestic mares and ate fodder meant for livestock. So not only were they hunted for meat, they were killed just to get rid of them. By the late 19th century, tarpans were already rare, whether they were really wild horses or hybrids of wild and domestic horses. The last one was killed in the wild in 1879 or the first few days of 1880, the last one in captivity died in the early 20th century—reports vary as to whether it was in 1909, 1917, or 1918, and there are some doubts that these last horses were actually tarpans.

The tarpan looked a lot like Przewalski’s horse: small, stocky, and with a large head, with short mane and tail. They were mostly bay in color—that’s brown with black mane and tail—but dun, black, gray, and other shades were also present. Unlike Przewalski’s horse, the mane fell across the neck like the domestic horse, but was shorter.

So is the tarpan really extinct? If you go online you can find tarpans for sale. What’s up with that?

As early as 1780, people realized the tarpan needed help to survive. That’s when the Polish government established a wildlife park to protect the tarpans living there, but it closed in 1806 and the horses were given to local farmers. A small number of tarpans were kept in zoos. In the 1930s and after, people have tried to breed a horse that closely resembles the tarpan, starting with domestic stock that probably have recent tarpan ancestors. Various breeds of horse have resulted, notably the Heck horse, often called a tarpan. It isn’t really a tarpan, but it sure is beautiful.

There are many horses in folklore, from Pegasus to the kelpie, centaurs to unicorns, but very few actual mystery horses. I looked, believe me. The kelpie, if you’re unfamiliar with the term, is a Scottish water spirit that sometimes appears as a pony with a sopping wet mane. Don’t try to catch it. The second you touch it, it’ll drag you into the water and drown you.

Anyway, I dug around and found not a mystery horse, but something really interesting about horses with horns—not like a unicorn’s horn, but something even stranger. Something real.

Every so often there are reports of a horse with a pair of horns on the forehead. Sometimes they’re described as tiny, although older accounts are more sensational. For instance, an 1837 account from a South American explorer talks about a horse with four-inch long horns like a bull’s, and another with horns three inches long. That would be about 8 cm to 10 cm.

Well, there are a few breeds of horse with what are called bossed foreheads. Basically this means the forehead sometimes has a pair of bony bulges or points above the eyes or near the ears that do look like tiny fur-covered horns like those seen in giraffes, or horn buds where horns could grow. Sometimes a horse will have only one of the bumps, but mostly they grow in pairs. Moyle horses, a North American breed, have the bossed forehead, as do the Datong from China and the Carthusian Andalusians. All three of these breeds are rare. Sometimes the trait appears in other breeds.

Now, these are no three- or four-inch horns. They’re just little bumps maybe a centimeter or so long, or about half an inch. It’s also not clear whether they’re real horns or just calcium deposits of some kind, but since they do seem to be situated consistently in spots where horns could reasonably expect to grow, it’s possible they are due to a genetic glitch that fails to fully suppress an ancient gene sequence that once grew horns. The problem is, as far as we know, there are no horse ancestors that ever grew horns.

While warts and bumps are as common in horses as they are in any mammal, this particular kind of horn-like bump doesn’t seem to appear anywhere else on a horse, even on those with bossed foreheads. A bossed forehead is also supposedly linked with high endurance, but as far as I know there are no real studies about the condition. So if you know someone who’s thinking about going into veterinary medicine, zoology, or a related field, suggest bossed foreheads as a particular topic of study. And then tell them to let me know their findings.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 044: Extinct and Back from the Brink

Our episode this week is about some causes of extinction, but to keep from getting too depressing we’ll look at a lot of animals that were brought back from the brink of extinction by people who saw a problem in time to put it right. We’ll learn a lot about the passenger pigeon this week especially. Thanks to both Maureen and Emily for their suggestions! I didn’t mean to lean so heavily on North American animals in this episode–it just happened that way. I try to mix it up a little more than this ordinarily.

The passenger pigeon (stuffed):

The tiny black robin. It fights crime!

The Tecopa Pupfish is not happy about being extinct:

The West Virginia Northern Flying Squirrel SO CUTE:

This is what the Golden Lion Tamarin thinks about habitat destruction:

A rare Amur tiger dad hanging out with one of his cubs:

The Organization for Bat Conservation

Episode transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about how animals go extinct, with examples of lots of animals who’ve gone extinct and others that have been saved from extinction by human intervention. Both topics were suggestions by Maureen, who also suggested several of the animals I included. I could have kept adding to this episode until it was 24 hours long, but I had to stop somewhere, and now that I’m recording I realize there are aspects of extinction I didn’t address at all.

Extinction means that a population of life forms have all died. That sounds pretty definitive, but it’s also hard to know exactly when it’s happened for any given species. Sometimes you can look online and find the specific day that the very last animal of a species died. In the case of the passenger pigeon, that was September 1, 1914, when a captive bird called Martha was found dead in her cage. Martha had been kept in the Cincinnati Zoo long after the last wild passenger pigeon was shot around 1901. But we don’t know for sure that she was the very last passenger pigeon alive at that point. Passenger pigeons were spotted in the wild for years after Martha died.

The passenger pigeon looks similar to the mourning dove, which is a common and very pretty dove throughout most of North America, but it’s not all that closely related. The passenger pigeon was a swift and elegant flyer but was awkward on the ground. And while mourning doves have a soft, musical call, the passenger pigeon apparently didn’t sound very musical at all. Its calls were mostly loud, harsh clucks that were described as deafening when one of the massive flocks of birds took off in alarm.

So what caused the passenger pigeon to go extinct? As is often the case, it wasn’t just one thing. We’ll come back to the passenger pigeon later, but for now let’s discuss one rather unusual cause that contributed to its extinction.

The passenger pigeon was famous for its numbers. There may have been as many as five billion birds alive at any given time, in flocks that numbered millions of birds each. I’m not exaggerating, either. A single flock could take an entire day to fully pass overhead and literally darkened the sky, there were so many individual birds. With so many birds, it wasn’t that hard for hawks and other hunting birds to catch as many pigeons as they could eat—but there are only so many hawks, and millions upon millions of pigeons. The passenger pigeon also nested in a relatively small area within its eastern North American range. Its nesting colonies were so huge they were called cities. A female laid one or two eggs, which both parents incubated. Sometimes there were so many pigeons in a tree that limbs would break off. By the end of nesting season, pigeon poop underneath roosts could be as deep as a foot, or 30 cm.

And while millions of adult birds were tending millions of eggs and babies, predators gorged themselves on pigeon. Hawks, eagles, owls, and other birds of prey naturally caught lots of pigeons, but other animals moved in to take advantage of the buffet. Bears, foxes, wolves, mountain lions, and smaller animals like possums and raccoons would all eat as much pigeon as they could catch. But there were so many birds that there literally weren’t enough predators to make a dent in the population before the babies could fly and the flocks left the nesting grounds for another year. I mean, birds sometimes just laid their eggs directly on the ground. They were not very hard to catch.

The problem was that once the passenger pigeon’s numbers fell due to other factors, the predators’ yearly glut of pigeon eating started making a difference. The once enormous flocks grew smaller and smaller. And since the passenger pigeon was adapted to thrive in huge colonies, where individuals worked together to gather food and feed babies communally, once the flocks dropped below a certain number, the birds weren’t able to raise their young effectively.

This is depressing, so let’s cleanse the palate with a bird that was saved from certain extinction not too long ago. There are actually a number of species I could have chosen, but I decided on the black robin because it’s tiny, jet black, and has a name that sounds like an alternate-universe DC comic book character.

When I say robin, my North American listeners think of a big thrush-type bird that always looks like it’s frowning, and my European listeners think of a tiny round ball of floof. The black robin is the round ball of floof type, but it’s not from Europe. It’s found only on a few small islands off the coast of New Zealand—really small islands. In 1980, the entire population of black robins lived on Little Mangere Island, which is 279 acres in size, or 113 hectares. Of course, the entire population of black robins in 1980 was five individuals, only one of which was a female. That bird was called Old Blue, and she basically saved her species. A team of conservationists led by Don Merton established a breeding program and today there are more than 250 of the birds.

The black robin was almost driven extinct mainly by introduced predators like cats, rats, and dogs. That’s a common problem, especially in island habitats. Like the dodo, the black robin had never had to deal with mammals that wanted to eat it. It isn’t entirely flightless but it spends most of its time on the ground, digging through brush and dead leaves for insects, and isn’t a very strong flier.

Habitat loss is another huge cause of extinction, and if I wanted to spend all year on this one topic I could. But I won’t, because that would be really grim and not fun at all. One of the factors contributing to the passenger pigeon’s extinction was habitat loss. It mainly ate acorns and small nuts, insects, and seeds found in forests, and when European settlers decided they wanted to turn huge sections of North American woodland into farms and towns, the passenger pigeon soon didn’t have enough forested areas to sustain its massive population. It would have had a hard time as a result even if all other factors had been in its favor.

Habitat loss doesn’t just mean cutting down trees. It can mean polluting a river, bottom dredging in the ocean, diverting water to farmland, and filling in wetlands. It also isn’t always caused by humans. Natural causes like forest fires and volcanoes can lead to habitat loss and extinctions. And many of the dinosaurs, of course, were killed off by a massive meteor impact and its long-term repercussions on climate.

I could choose any of literally thousands of examples of animals that went extinct due to habitat loss, but here’s just one. I mainly chose it because it has a cute name. The Tecopa pupfish was an awesome little fish that lived in California, specifically in the Mojave desert, which is not a place you’d ordinarily expect to find any fish. There are hot springs in the Mojave, though, and the pupfish lived happily in water that was 110 degrees F, or 43 C, or even a little warmer. That’s the temperature of a comfortably warm bath. It ate algae but it also gobbled up mosquito larvae, and it was only about an inch and a half in length, or 4 cm. It didn’t live in the actual hot springs pools, which were too hot, but in a pair of outflows, basically streams that flowed away from the pool down to the Amargosa River.

The problem is, humans really like hot springs. In the 1950s and 60s, people flocked to the Tecopa Hot Springs to soak in the water. Bathhouses were built, the hot springs pools were enlarged, and in 1965, both outflows from the springs were diverted into a single newly dug channel. After that, the water flowed faster. That meant it remained too hot for the pupfish unless the fish moved downstream, and when it moved downstream to where it was comfortable, it had to compete with another subspecies of pupfish, the Amargosa River pupfish. It also had to compete with introduced species of fish.

By 1966, almost no Tecopa pupfish remained. In 1970 it was put on the endangered species list, but by then it was far too late. By 1972 there were no Tecopa pupfish.

Oh my gosh, that’s so depressing. I need another success story. The West Virginia Northern Flying Squirrel is an adorable and fascinating rodent, a subspecies of the more common northern flying squirrel, but it lives only in the highest elevations of the central Appalachian Mountains. During the ice ages, it was isolated from other flying squirrel populations by glaciers and developed separately. It has a broad, flat tail and loose folds of skin that connect its forelegs to its hind legs along its sides. When it jumps from a branch, it holds its legs out to pull the skin folds taut, which allows it to glide through the air.

But it almost died out completely due to industrial logging. By 1985, only ten individuals were found in four different areas of its range. It was listed as a protected species in 1985, and that together with the conservancy of its mountaintop habitats, allowed it to increase to a small but healthy population today.

The West Virginia Northern Flying Squirrel was lucky because its habitat became protected and started to recover from heavy logging, so the flying squirrels were able to stay put and lead their ordinary squirrelly lives. Other species aren’t as fortunate. The Golden Lion Tamarin, for instance, has been snatched from the jaws of certain death but still faces an uphill battle due to habitat destruction.

The golden lion tamarin is a monkey native to the coastal forests of Brazil. It’s a gorgeous monkey with golden-orange fur that grows long around the face so it looks like a lion’s mane. The golden lion tamarin is only around 10 inches long, or 25 cm, not counting its long tail, and it lives in trees where it runs and leaps and climbs a lot like a big golden squirrel.

The problem, of course, is that the Atlantic Forest of Brazil keeps getting cut down. What used to be nearly unbroken forest that stretched for thousands of miles has now shrunk to only around 8% of its original size, and it’s in little bits and pieces widely separated from each other. By 1969, there were only 150 tamarins left.

Fortunately for everyone, especially the tamarins, an aggressive conservation program was well underway by 1984. Zoos throughout the world started breeding golden tamarins for reintroduction into protected wilderness in Brazil. As it happens, while I was still researching this episode, I got an email from a listener that is just so perfect, I have to share it. Emily wrote,

“I used to volunteer at the zoo and I was in charge of making sure the Golden Lion Tamarin monkeys didn’t escape their habitat. There were no fences around it, since they were trying to simulate natural conditions enough so that they could eventually be released back into the jungle. So my job was to walk around the enclosure and shoot them with a water gun. It was set on “very soft.” Just a gentle aquatic nudge to get back in the tree! They were tiny, luxurious creatures and I hated it when my scheduled changed and I had to stop volunteering.”

I love this so much. Thank you, Emily, for sharing the story with me and agreeing to let me use it on the show. I feel like I should pause for a moment so everyone listening can just imagine how awesome it would be to walk around spritzing beautiful little monkeys with water.

Anyway, the population of golden lion tamarins is now over 3,000. And even better, the Brazilian government has made an effort to develop protected wilderness corridors connecting what used to be separate sections of forest. This will help not just the tamarins but lots of other animals too.

Now I feel great. But we’re not done talking about causes of extinction, and unfortunately we’ve reached the worst part: overhunting by humans.

That was the main cause of extinction for the passenger pigeon. People would just shoot up into the air at the seemingly endless flocks of birds. They didn’t even have to aim. Every shot would bring down a rain of dead and injured birds. Almost no one imagined the passenger pigeon could possibly go extinct—there were just too many of them. Even when the flocks were noticeably smaller and the birds’ range had shifted away from the more populated eastern states, professional hunters and trappers continued to follow the flocks and kill as many birds as possible. The dead pigeons were shipped by train to big cities as cheap meat—so cheap that by 1876 it actually cost more to ship a barrel of pigeons on ice than it cost to buy the pigeons when they arrived. By 1878, only one large nesting site remained—and 50,000 pigeons were killed there every single day. No babies survived from that nesting and the surviving adults were killed when they tried to start new nests in another area.

It was senseless. It makes me so mad. But while the passenger pigeon was a great big lesson on how quickly a species can be driven to extinction from an enormous, thriving population, it happens on a smaller scale all the time.

The Caribbean Monk Seal, sometimes called the wolf seal, grew to about 8 feet in length, or 2.5 meters, and had sleek dark gray fur that sometimes looked greenish due to algae growing on it. They were curious, friendly animals that didn’t fear humans, and you can see where this is going. The first European to see the Caribbean monk seal was Christopher Columbus, whose men killed eight seals. The next European to see the Caribbean monk seal was Ponce de Leon, whose men killed 14 seals. Things didn’t get any better from then on.

Seals provided oil from their fat, much like oil made from whale blubber. It could be used to grease machinery or burn in lamps—remember, this was before petroleum products and electricity. Hunting the seals for oil, meat, and skins wasn’t the only problem, though. Conservation back in the 19th century wasn’t all that great. Scientific expeditions usually just killed as many animals as they could find, because that was how they were studied. In only four days, an 1886 expedition specifically made to study seals killed 42 animals and captured a newly born pup that died a week later.

The Caribbean monk seal held on for decades despite the slaughter, but the last one was spotted in 1952 and that was it. Not only were the seals hunted nearly to extinction, the fish and crabs the seals ate were also overhunted. What seals remained had almost nothing to eat and frequently starved to death.

We need a big success story after that one. Let’s talk about the California condor.

The California condor is an enormous bird with a wingspan ten feet wide, or over 3 meters. It’s a scavenger so it looks superficially like a vulture, with a bald head. Its feathers are black with white patches under the wings, and it has a floof of feathers around its neck that looks precisely like it’s wearing a really fancy opera cape. By 1987, the entire world population of the California condor was 27 birds. And those 27 birds were not going to survive long without help. Poaching and habitat loss had almost wiped them out, along with poisoning from lead bullets—the birds would eat the bullets frequently left in the discarded guts after a hunter field dressed a kill.

So all 27 birds were captured and placed into a breeding program, although only 14 birds were able to breed. By 1991 there were enough condors that individuals started to be released into the wild again. Currently there are almost 450 birds total.

Fortunately, in 2019 California hunters will no longer be allowed to use lead bullets at all, and a lot of hunters have already started using lead-free ammunition. This will allow more condors to be released in areas of California where they used to live but were hunted to extinction over a century ago. Lead poisoning is a big problem for all scavengers, including bald eagles.

Our last success story is the Amur tiger, also called the Siberian tiger. It had a lot of names in the past because its range was so large, from Korea to northeastern China, eastern Mongolia, and parts of Russia. It’s a big tiger, as big as the Bengal tiger in the past although the remaining population of Amur tigers is overall smaller than Bengal tigers today. Its head is broad, with a skull similar to a lion’s. Its coat color and markings vary considerably, and its winter coat grows very long and shaggy.

The Amur tiger was already under pressure from hunting and habitat loss when the Russian Civil War broke out in 1917. Tigers were either killed by accident during the fighting, or killed by soldiers on patrol, almost wiping out what animals remained. And after that, tiger hunting wasn’t prohibited until 1947, at which time only a few dozen tigers were left.

Fortunately, it survived. In 2007 the Russian government even set aside a national park just for the Amur tiger. No human activity is allowed in most of the park and tiger numbers are climbing. In 2015, a logging company agreed to dismantle abandoned logging roads so they couldn’t be used by poachers. Bridges were removed, trenches dug, and some areas were simply bulldozed so that vehicles can’t get through. That’s the same year that camera traps got rare photos of an adult Amur tiger male, a female, and three cubs. Since male tigers are usually solitary, that was pretty awesome.

Genetically the Amur tiger is very similar to the extinct Caspian tiger. There’s a possibility that as the Amur tiger’s population grows, it could be reintroduced to parts of Asia where the Caspian tiger once lived.

That brings me to something I meant to mention in last week’s episode. If you listened to the recent Relic: The Lost Treasure podcast episode where I was a guest, you heard me absolutely mangle an explanation of what a subspecies is. So here’s my attempt to clarify what I was trying to say. A subspecies develops when an animal population becomes isolated from the rest of the population for long enough to start evolving in different ways from the parent population. A subspecies can still produce fertile offspring with the parent species and other subspecies of the same species, and may look almost the same, but on a molecular level it’s different enough that if given enough time, it will continue to develop into a different species.

It’s a complicated topic and I said the word species too many times. But hopefully that gives you an idea. Technically humans are a subspecies of Homo sapiens, by the way. Our official scientific name is Homo sapiens sapiens. The extra sapiens indicates that we’re a subspecies and that we’re extra smart, because sapiens means intelligent. All tigers are subspecies of the species Panthera tigris, and the Bengal tiger is called Panthera tigris tigris, because I guess they’re extra tigery.

Anyway, it’s important to remember that while a subspecies may look almost identical to the parent species, it’s developing in different ways due to different evolutionary pressures in its specific habitat. The dodo’s ancestor was a type of pigeon that decided to stay on the island of Mauritius. It probably continued to look like a pigeon for a long time before its evolutionary changes started to show. It’s easy to think that a subspecies going extinct isn’t as important as a full species going extinct, but that’s not the case.

Thinking about extinction can make us feel angry and helpless. But there are lots of things you can do to help, simple things like picking up trash when you’re out hiking, remembering to bring your reusable bags into the grocery store, and using a refillable water bottle instead of buying a new plastic bottle of water. If you have some extra money, there are lots of good conservation organizations that can use a donation. One I try to donate to every year is the Organization for Bat Conservation. I’ll put a link to it in the show notes if you’re interested. If you don’t have extra money but can donate your time to a local organization, that’s just as good. Although you probably won’t be lucky enough to get to spritz monkeys gently with water.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on iTunes or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 042: Mystery Bears

This week we’re going to learn about bears, including a bunch of m y s t e r y  b e a r s!

Hi! I am a panda bear!

A polar bear:

A spectacled bear:

A baby spectacled bear OMG LOOK AT THAT BABY:

The giant short-faced bear was indeed giant:

Further reading:

Shuker Nature

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

I’m in the mood for a bona fide mystery animal, and I bet you are too. So this week let’s learn about some mystery bears.

There are eight species of bears alive today that we know of: brown, polar, spectacled, sloth, sun, Asian and American black bears, and the giant panda. The other ones you may have heard of, like grizzlies, are subspecies of those eight. For a long time pandas were not considered bears at all, but more closely related to raccoons. These days they’re definitely in the bear box, but they’ve evolved in a completely different direction from other bears for some 19 million years, which is why they’re so different.

Before we get into the mysteries, let’s talk about just how different pandas are from other bears. As you probably know, the panda eats bamboo almost exclusively, unlike all other bears which are either omnivorous or, in the case of the polar bear, carnivorous. To survive on bamboo, the panda has evolved a lot of unusual adaptations. The front paws, for instance, have five toes just like all bears, and also a thumb. The thumb is actually a modified wrist bone that juts out from the base of the paw and helps the panda hold bamboo stalks as it eats the leaves.

Bamboo is not very nutritious. It’s certainly low in protein, especially considering that while the panda eats almost nothing but bamboo, it still has the digestive system of a carnivore. Special microbes in the panda’s intestines help break down the bamboo so the panda can digest it, but it takes a lot of bamboo to provide the energy a panda needs. A panda eats 20 to 30 pounds of bamboo leaves, stems, and shoots every day, or 9-14 kg, which means it also poops a whole lot. Seriously, it poops something like 40 times a day. And it still doesn’t have a lot of energy. It mostly just sits around eating and pooping. But while the panda just chews leaves all the time, it still has bear fangs and it will eat meat and eggs when it can. Researchers think that the panda only became exclusively a bamboo eater about two million years ago.

The panda lives in the mountains of China in only a few places. It used to also live in the lowlands but farming and other development drove it into more remote areas. There are about 50 pandas in captivity these days and somewhere between 1,500 and 3,000 pandas in the wild, with the population finally increasing after laws protecting pandas from poaching started to be enforced.

The people of China knew about the panda for centuries, although they were considered rare and elusive even in the olden days, but it wasn’t until 1869 that anyone from outside of China had a clue that gigantic roly-poly black and white bamboo-eating six-toed bears were real. Seriously, would you believe that? In 1869 a French missionary and naturalist bought a dead panda from some hunters, dissected it to study, and sent the skin to a zoologist friend in Paris.

So it’s possible that there are other mystery bears out there, known to the locals who don’t realize their bears are special, just waiting to be spotted by someone who knows a thing or two about bears.

In 1920 a Swedish scientist named Sten Bergman was shown the pelt of a bear by locals during an expedition to the Kamchatka Peninsula. That’s in the very eastern part of Russia on the Pacific coast and is sparsely populated. It’s mountainous with a cluster of active volcanos and it’s well known for the brown bears that live in the area. The Kamchatka brown bears are among the largest brown bear subspecies in the world, almost the size of the closely related Kodiak brown bear. When it stands on its hind legs it can be almost ten feet tall, or 3 meters. It’s mostly harmless to humans. Mostly. It hardly ever kills people. Just, you know, occasionally. The Kamchatka brown bears have long brown fur, sometimes pale brown but usually a sort of medium brown. They’re certainly not black. But the pelt that Dr. Bergman was shown was jet black and had short fur. But it was definitely a bear pelt, and the pelt was definitely enormous—much larger than a brown bear pelt. Bergman also saw a huge skull supposedly from one of the black bears, and a paw print 15” long and 10” wide, or 38 cm by 25 ½ cm.

Unfortunately none of the giant black bears have turned up since, living or dead. It’s possible that the bear was an unusually large brown bear with anomalous fur. Brown bears do have considerable variability in both the color and length of their fur, so it’s not out of the question that occasionally a brown bear is born that is actually black. It’s also possible that this black bear is actually a different species of bear, but that it’s either gone extinct or is extremely rare and only lives in far remote areas of Siberia these days.

But the Kamchatka Peninsula has another mystery bear for us to ponder. In 1987 a hunter named Rodion Sivolobov bought a giant white bear skin from locals. It looked like a big polar bear pelt, but the locals assured him it was from a very specific, very rare type of local bear.

They called it the irkuiem and described it as large but with a relatively small head, relatively short hind legs, and an unusual method of running. It supposedly runs in a sort of rocking motion, bringing both hind legs up to the forelegs, then throwing the forelegs forward together to start a new stride–more like a rabbit’s bounding run than a bear’s typical gait.

Sivolobov sent samples of the pelt to various zoologists in Russia, but they said there wasn’t much they could determine without a skull. But with DNA testing so much more advanced these days, it would be REALLY NICE if Sivolobov would get right on that and get his white bear pelt tested. If it really exists and if he’s not scared he was sold a marked-up polar bear skin with a tall tale.

The polar bear lives in the Arctic and is so closely related to the brown bear that the two species occasionally crossbreed when their range overlaps. Technically polar bears are marine mammals since they hunt seals on sea ice and spend a lot of time in the water. Sometimes a polar bear will drift for long distances on a piece of sea ice, or may swim for days, crossing hundreds of miles of ocean.

Polar bear feet are huge, around 12 inches wide or 30 cm, which helps keep the bear from sinking in the snow since its weight is more widely distributed on broad paws. Think snowshoes. Broad feet also helps it swim faster. The paw pads are bumpy so it’s less likely to slip on ice, and the claws are short and strong for digging in snow and ice. The polar bear stays warm because its body is heavily insulated with fat, plus its fur is thick with a soft undercoat that insulates so well that polar bears really are virtually invisible to heat-sensing radar. Male polar bears grow long fur on their forelegs, apparently because lady polar bears find that attractive. Unlike most other bears, polar bears don’t hibernate.

Georg Wilhelm Steller was a German naturalist who took part in explorations of Kamchatka Peninsula and other areas. He’s the guy that Steller’s sea-cow is named after and one day it’s getting its own episode. Anyway, in 1751 Steller wrote a book called, in English, Beasts of the Sea, and in it he mentions a report of a white sea-bear. He didn’t see it himself, but here’s his account, which I’ve taken from Karl Shuker’s excellent blog ShukerNature. I’ll link to it in the show notes.

Here’s the quote:

“Report, as I gather from the account of the people, has declared that the sea-bear, as it is called by the Rutheni and other people is different. They say it is an amphibious sea beast very like a bear, but very fierce, both on land and in the water. They told likewise, that in the year 1736 it had overturned a boat and torn two men to pieces; that they were very much alarmed when they heard the sound of its voice, which was like the growl of a bear, and that they fled from their chase of the otter and seals on the sea and hastened back to land. They say that it is covered with white fur; that it lives near the Kuril Islands, and is more numerous toward Japan; that here it is seldom seen. I myself do not know how far to believe this report, for no one has ever seen one, either slain or cast up dead upon the shore.”

Shuker suggests that this report may actually be of a fur seal, which is found in the area and has sometimes been called a sea-bear. Then again, fur seals aren’t white. They’re gray or brown and would appear darker in the water.

The Kuril Islands are a string of 56 volcanic islands that stretch between the northeastern tip of Hokkaido, Japan to the southern tip of Kamchatka Peninsula, a distance of about 810 miles, or 1300 km. Some of the largest islands are inhabited by brown bears, but it’s far from the Arctic. Polar bears get overheated easily in warmer areas, so a population of polar bears—or even a stray one—is unlikely that far south.

There are also stories of pure white bears in the forests of Hubei province in China. It’s always possible this is a garbled account of the panda, but maybe not.

In 1864, Inuit hunters supposedly killed a huge bear with yellowish fur. Naturalist Roderick McFarlane acquired the skin and skull and sent them to the Smithsonian, which promptly lost them. That’s the story, anyway. In fact, the Smithsonian did misplace the skin and skull for a while, but zoologist Clinton Hart Merriam found and examined them. He decided it was a new species of bear due to the skull’s odd shape and the light tan color of the fur.

Older polar bears do tend to have yellowish fur so maybe that’s all this bear was. But it might have been something else. As I mentioned earlier, polar bears and various subspecies of brown bear do sometimes crossbreed and produce fertile young. It’s rare, but it happens occasionally both in the wild and in captivity. The resulting babies show traits of both polar bears and brown bears, and tend to be pale brown or tan in color with darker brown paws. Then again, there’s a MonsterQuest episode that I haven’t actually seen where a paleontologist examines the McFarlane skull and states it’s just that of a young female brown bear.

For having only eight species, bears are remarkably widespread and vary considerably in diet and appearance. The sloth bear mostly eats insects, for instance. It lives in India and has shaggy black fur with a pale muzzle and white claws, big floppy ears, and a white V-shaped mark on the chest. It lacks upper incisors, which helps it slurp up insects.

Sloth bears are actually pretty darn awesome. Males often help raise the cubs and mothers carry their babies around on their backs. The sloth bear doesn’t hibernate, probably because it doesn’t really get cold where it lives.

The spectacled bear lives in South America. It’s the last close relative of the giant short-faced bear that went extinct about 11,000 years ago. The spectacled bear is mostly black, although some individuals may appear brown or reddish, and most but not all have lighter markings on the face and chest. Its head is much less bearlike than other bears, with a rounded face and short snout. It mostly eats plants and lives in the Andes Mountains and surrounding areas. It spends a lot of time in trees, and will even build a little platform in a tree to sleep on or store food on.

And you know what? Paddington Bear is modeled on the spectacled bear.

The spectacled bear is not especially scary. Its relative, the giant short-faced bear, was another story. It lived in North America, especially in California, and its remains have been found in the La Brea tar pits. But it also lived as far south as Mississippi. And it was huge. It was simply enormous. It stood up to 6 feet at the shoulder, or 1.8 meters, and twice that when standing on its hind legs. One website I read pointed out that regulation height for a basketball rim is ten feet, which means a giant short-faced bear could dunk the ball every time without doing anything more strenuous than standing up. It was probably an omnivore like most modern bears, but we have mastodon bones that show tooth marks from the short-faced bear.

Naturally, as with just about any extinct animal, people keep hoping they’re not really extinct and occasionally someone reports seeing a giant short-faced bear. Some cryptozoologists speculate that the Kamchatka Peninsula mystery bears may actually be short-faced bears, but since short-faced bear fossils have only been found in North America, it’s probably not likely that there would be any living in Russia. Besides, the short-faced bear would have looked very different from the brown bear, probably shaped more like a colossal spectacled bear. Locals would definitely notice the difference. Moreover, it’s not likely to live in the same area that already has a population of brown bears, since both animals would then be competing for the same resources.

Personally, while the giant short-faced bear is awesome to imagine, I’m perfectly happy with it not wandering around in the forests. Because I like to hike. And I worry enough about the relatively small and harmless American black bear as it is.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on iTunes or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 041: Comb Jellies and Sea Sponges THE CONTROVERSY

We’re learning about comb jellies this week, along with the sea sponge, and the MASSIVE CONTROVERSY ABOUT THE TWO THAT IS PITTING SCIENTIST AGAINST SCIENTIST I might be overstating it just a bit

The lovely Arctic comb jelly:

The lovely Venus’s girdle comb jelly:

A fossil comb jelly. Probably lovely when it was alive:

A sea sponge (most are not this Muppet-like):

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

For this week’s episode, we’re revisiting jellyfish, more properly known as jellies. The first jelly episode is far and away our most popular and I can’t figure out why. I mean, I’m glad people like it. This time, we’re going to learn all about comb jellies, which are not really as exciting as true jellies. There is no ship-sinkingly enormous comb jelly lurking in the oceans of the world. But they are really interesting.

When you think of a jelly, you probably picture a roughly bell-shaped thing with long stinging tentacles. But most comb jellies are more like egg-shaped blobs, and either don’t have tentacles at all or only have relatively small tentacles that don’t sting. Although they look alike superficially, comb jellies and true jellies are so different that scientists don’t think they’re very closely related at all. Comb jellies are officially called ctenophores (TEN-oh-fours), spelled with a c-t at the beginning if you were wondering. I looked up the pronunciation. Yeah, I know, I pronounced Pliny wrong all through episode 12, but come on, it looks like it should be pronounced Pliny and not Plinny. It’s not like anyone ever came up to me and said, “Hey, what about that Plinny, what a guy.” I just read the name.

But I digress, inexplicably.

Instead of pulsing its bell to maneuver in the water, a comb jelly has rows of tiny compact filaments called cilia, fused together in combs that help it swim. The combs are also called swimming plates.

There are two main types of comb jellies, those with tentacles and those without tentacles. The ones without are called Nuda, or Beroids, and while they don’t have tentacles, they do have combs of extra-large cilia, called macrocilia, that sever prey into pieces small enough to swallow. Mostly they eat other comb jellies. Beroids also have big mouths, but a beroid can actually seal its mouth shut while it’s moving so it’s more streamlined.

Comb jellies with tentacles are divided into eight orders roughly based on body shape. The most common order, the cydippida, are egg-shaped with a pair of thin tentacles that they use sort of like fishing lines. The tentacles are long and sticky, trapping tiny organisms or particles of food. Some species have branched tentacles but none have more than two. The tentacles can retract—when you see a picture of a comb jelly with a weird spring-like thing sticking out from its bottom, that’s a retracted tentacle, not anything gross like a poop. The tentacles contain cells called colloblasts. When an organism touches a tentacle, the colloblast cells rupture and basically release glue that keeps the prey from escaping.

A cydippid comb jelly also has eight combs that run from the top of the body to the bottom, which makes it look sort of like a fancy decorated egg. Comb jelly cilia are iridescent, by the way, so they reflect light in rainbow patterns. Basically what I’m saying is, these little guys are actually really pretty.

All comb jellies are predators, but most eat plankton and other tiny food, because most comb jellies are really small—only a few inches long at most. Bigger species may eat krill and small crustaceans. The biggest comb jelly, Cestum veneris, more often called Venus’s girdle, can grow some five feet long, or 1.5 meters, but only some two inches, or 5 cm, wide. It looks like a nearly transparent or purplish ribbon and lives in tropical and subtropical seas. I wouldn’t want to touch it, but it’s not exactly dangerous. In fact, it’s so delicate that a diver attempting to touch one may accidentally destroy it instead. A lot of comb jellies are that delicate, making them hard to study, so we still don’t know a whole lot about them.

Comb jellies only have one body opening, called a mouth for convenience sake although the jelly uses it for anything that requires a body opening. Until recently, researchers thought that included pooping. Yeah, now you see why it’s not exactly a mouth. But it turns out that a comb jelly has pores on the opposite end of its body from its mouth opening that it uses to release at least some particles of indigestible food. This is interesting since it helps scientists understand how the anus evolved.

There aren’t that many species of comb jellies, maybe 100 or so. But new ones are discovered occasionally, especially deep-sea comb jellies. While comb jellies that live near the surface of the ocean are usually transparent, many deep-sea species are red, since it’s a color most deep-sea animals can’t see. Most are also bioluminescent, and when threatened some species will secrete a luminescent goo. The predator may get confused and attack the goo while the comb jelly swims away as fast as its frantically waving cilia can take it.

If you’ve listened to episode 15, about the hammerhead shark and megalodon, you’ll remember that we don’t have a lot of shark fossils because shark skeletons are made of cartilage, not bone. We just have a lot of shark teeth, mostly. Now think about how big and solid sharks are, then think about how smooshy jellies are. Then try to imagine what a jelly fossil might look like. Yeah.

We do have some comb jelly fossils, though. But we don’t have many. Like, five. We have five. The oldest are from the mid-Cambrian, some 500 million years ago, but they were very different from the comb jellies living today. They had lots more combs, for one thing—between 24 and 80 instead of 8. Researchers have found other fossils that may be of comb jellies. There’s a good possibility that they were widespread throughout the oceans back then—but from genetic testing and other molecular analysis, it appears that the comb jellies alive today are all descended from a common ancestor that survived the Cretaceous-Paleogene extinction around 65 million years ago. So it’s possible that in addition to so many dinosaurs dying off, almost all comb jellies went extinct then too.

Just think, if that one species hadn’t survived and evolved into the comb jellies we have today, researchers might not have a clue what animal those comb jelly fossils represented. If you know about the Burgess shale fossils that have baffled and fascinated paleontologists for decades now, because so many of the fossils don’t resemble anything living today, then it’ll make sense to learn that a few of those five comb jelly fossils were actually found in the Burgess shale.

There are some other comb jelly fossils discovered in China and dated to 520 million years ago. But they don’t resemble the comb jellies living today at all because they had skeletons and spines. Pretty much every fossil found from the Cambrian had supportive or armored structures, even ones like comb jellies that don’t have those things today. I’ll probably do a whole episode eventually about the Cambrian period and the Burgess shale discoveries.

Anyway, there’s some controversy going on right now regarding whether comb jellies or sponges were the species that gave rise ultimately to all other animals, so let’s take a quick side trip and learn about sponges.

The sponge is a very simple animal, still around today. They don’t have any specialized structures like nerves or a digestive system or a circulatory system or organs. They’re just a sponge, basically. And if you were wondering, the sponge you use to clean your kitchen is named after the sea sponge, not vice versa, and you can still get actual dried sea sponges to use for cleaning. They’ve been used that way for millennia. It wasn’t until 1866 that scientists even realized sponges were animals and not plants.

Living sponges just hang out in the ocean or freshwater, stuck to a rock or something. Water flows through them and washes food and oxygen in and waste out. That’s it. That’s all a sponge does is let water flow through it. I feel like there’s a life lesson to be learned there, but I’m too busy doing ten things at once to figure it out.

Mostly sponges eat bacteria and other tiny food particles, although some eat small crustaceans and a few have developed a symbiotic relationship with plantlike microorganisms, which live safely in the sponge and produce enough food for both it and the sponge. Every so often a sponge will release eggs or sperm into the water. If the conditions around a sponge deteriorate, some species will create bundles of unspecialized cells called gemmules. When conditions improve, the gemmules will either grow into new sponges or, if the sponge that created them has died, it will recolonize the original sponge’s skeleton.

A sponge’s skeleton is a sponge, by the way. If you’ve got a natural sea sponge in your house, that’s what you’re cleaning your kitchen counters with, the skeleton of a sea sponge. Different sponges use different minerals to create their skeletons and most are pretty hard, but the ones sold as natural sponges are softer and throughout history have been used for everything from padding armor, applying paint, and filtering water. Loofah sponges aren’t actually made from sea sponges, though. They’re actually from the dried insides of the sponge gourd. I did not actually know that until just now.

Oh, and guess what else I just learned? There’s a small population of bottlenose dolphins in Western Australia that use sponges. The dolphins frequently hunt close to the bottom of the bay. To keep from scraping its rostrum, or bill, in the sand, a dolphin will sometimes stick a sponge under its chin. Researchers think that one especially smart dolphin figured this out and has been teaching her children how to do it ever since.

So that’s the sea sponge. Useful for many things, not much of a party animal. Compared to sea sponges, comb jellies are intellectual masterminds. Even though comb jellies don’t have brains.

Instead, comb jellies have a nerve net. The nerves are concentrated around its mouth and on its tentacles. It does also contain an organ that helps the jelly sense its orientation, basically so it knows which way is up. It usually swims with its mouth pointing upward, incidentally. But while the comb jelly’s nervous system is pretty sophisticated for such a simple animal, it’s also very different from other animals’ nervous systems. Like, super different. Its nerves are constructed from different molecules and use different neurotransmitters.

Its nerve cells are so different from other animals’ that some researchers think it actually evolved separately. Specifically, neuroscientist Leonid Moroz thinks so. He thinks that the first ancestor of comb jellies split off from the sea sponges some three quarters of a billion years ago and evolved separately from all other animals.

Since comb jellies use a different set of chemicals as other animals to accomplish the same tasks, a couple of articles I read make a big deal about how evolution must therefore follow a prescribed path—that animals must have certain traits to survive. But assuming comb jellies did split off from sponges that early and did evolve separately from other animals, they were still competing against those other animals. It’s not like they had an ocean to themselves, although that would be awesome if they did, because who knows what they might have evolved into?

The controversy about whether sea sponges or comb jellies were basically the trunk of the tree of animal life started in 2008, when a study in the journal Nature compared DNA sequences across a number of animal species and suggested that the comb jellies were evolutionarily first. A 2013 paper published in Science by another team of researchers made the same conclusion based on the genome of a species of comb jelly called the sea walnut. That is such a cute name. Don’t you just want to cuddle the little sea walnut and make little hats for it?

All this ignited what some articles call a firestorm of controversy. I like to imagine researchers reading the articles and FREAKING OUT. Moroz’s studies of the comb jelly’s nervous system, and the complete genome of a different comb jelly, the sea gooseberry, appeared in Nature in 2014. Moroz now thinks that nervous systems have developed independently at least nine times in various different groups.

The controversy at this point appears to have several factions. Moroz’s group thinks comb jellies split off from sponges, and that everything else split off from comb jellies but developed separately in the neurological sense. Another group thinks comb jellies split off from sponges and everything evolved from comb jellies, and that comb jellies aren’t all that weird neurologically. Another group thinks comb jellies and sponges split off from a common ancestor of both that had a simple nervous system, which comb jellies retained but sponges lost, and that everything else evolved from comb jellies. But then there’s the other side, the ones who think sure, comb jellies split off from sponges, but so did everything else ultimately, and comb jellies are no more the base of all animal life than the man in the moon.

One thing everyone agrees on, though, is that we still don’t know enough about comb jellies. And they are really pretty.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on iTunes or whatever platform you listen on. We also have a Patreon if you’d like to support us that way. Rewards include stickers and twice-monthly bonus episodes.

Thanks for listening!

Episode 037: The Dobhar-Chu

This week we’re in Ireland learning about the dobhar-chú, a vicious creature that might be an otter but might be a KING otter! Either way, it’s a killer.

The weird creature carved on Grace Connolly’s gravestone:

How can such an adorable floof be so MURDEROUS? Eurasian otter:

The giant otter (from South America) imitating a sea serpent (hmm):

Giant otter has teeth:

Further reading:

The Search for the Last Undiscovered Animals by Karl PN Shuker

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

We’re one week closer to Halloween, and it’s time to learn about a mysterious, deadly animal from Ireland called the Dobhar-chú (pronounced do-war-coo). Appropriately enough, our story starts in a graveyard.

Conwall Cemetery is in the town of Drummans, near the valley of Glenade. In the cemetery is a sandstone grave marker lying flat on the ground. It’s about 4 ½ feet wide and nearly two feet high, or 1.37 by .6 meters, and is dated September 24, 1722. The name on the stone is Grace Con, wife of Ter MacLoghlin. But the main part of the stone is made up of a carving of an animal.

I’ll put a picture of the carving in the show notes. It’s not very clear, but basically, it looks like a heavy-bodied dog with limbs folded beneath it as though it’s crouching. It has a long tail although that has mostly worn off. Its head is small, with tiny ears, and its neck is folded back so that its head lies along its back. A hand holds the hilt of a sword that is plunged into the animal’s neck, with the tip of the sword just visible below the belly.

There are various stories and poems about what happened to Grace Con, or Grace Connolly, but they’re all basically the same. Incidentally, it was Gaelic custom for women to retain their maiden names, which is why Grace’s last name doesn’t match her husband’s.

One morning Grace went down to the lake either to wash or to do laundry, reports differ. When she didn’t return home, her husband Terence McGloughlan went to find her. But when he reached the lake, he found his wife’s body–with a monstrous animal, the dobhar-chú, feeding on it. Terence killed the beast, but as it died it gave a piercing whistle or squeal. The squeal was answered by another animal from the lake, which surfaced and charged Terence.

He fled home just ahead of the monster, leaped on his horse, and galloped away with the monster pursuing. Eventually his horse tired, so Terence dismounted and turned the horse sideways across the road to act as a sort of shield. When the dobhar-chú ducked to run beneath the horse’s belly, Terence stabbed it through the heart.

Dobhar-chú is an Irish term meaning water-hound. It’s used as a name for the Eurasian otter, but can also refer to something called a master otter or king otter. But before we go any farther, let’s get some background on the otters that live in Ireland and Scotland, since the legend of the dobhar-chú is known in both places.

The Eurasian otter lives throughout Europe and Asia. It’s shy, solitary, and territorial. It’s a pretty big animal, and some big adult males can grow as long as four and a half feet, or 1.4 meters, including the tail. Females are smaller. The otter’s toes are webbed, which makes it a good swimmer. It’s dark brown above, grayish-brown below, with white or cream-colored markings around the throat and cheeks. It has a long, slender body and flattened head with tiny ears and sensitive whiskers. Oh, and it’s incredibly cute. Oh my gosh is it cute.

The otter eats fish, frogs, and invertebrates like crayfish. It lives in rivers and lakes and likes plenty of cover around the water’s edge. While it prefers fresh water, it will enter the ocean, but it needs fresh water both to drink and to clean salt from its coat. It’s usually nocturnal and is especially active at dusk and dawn, although if an otter’s territory is along the coast it will be more active during the day since it forages in rock pools at low tide for fish and invertebrates. Sometimes people call otters who live along the coast sea otters, but in Great Britain and most of Europe they’re the same type of otter that lives in freshwater.

Instead of having one den, an otter’s territory has a number of places where it sleeps or just hangs out. Above-ground areas are called couches and are well hidden in dense vegetation and frequently on small islands. Underground areas are called holts. A holt might be dug into a river bank, among a big tree’s roots, or just be a crevice among fallen rocks. A mother otter will have her babies in a holt that’s fairly remote from her usual activities. She usually has two or three babies at a time, called cubs.

An otter marks its territory with droppings that actually smell nice, like new-mown hay. I have not smelled them myself so I can’t vouch for this. The droppings are called spraints. While otters were once common throughout Europe, they’re much rarer these days, mostly because they can’t live in polluted streams, and these days they are totally protected. You’re not even allowed to damage an otter’s couch or holt, much less the otter itself.

Now we know about the otter, but what’s a master otter? According to Irish and Scottish folklore, it’s basically a super-otter. It’s much larger than a regular otter and sometimes appears with scores of regular otters as though leading them, and it may have some magic powers. Carrying its pelt, or part of its pelt, is said to protect someone from injury or shipwreck. One description says it’s white except for black ear tips and a black cross on its back, another says it’s half wolf, half fish. One account from 1684 calls it an Irish crocodile and describes it as “of the pitch of an ordinary greyhound, of a black slimy skin, without hair,” and says it’s also called a water-dog or Anchu. Whatever it is, it’s rare and dangerous.

So what might it be? As it happens, there is a species of otter that sounds a lot like the dobhar-chú. It’s called the giant otter, and while these days a big male is not much more than about 5 and a half feet long, or 1.7 meters, in the past before they were nearly driven extinct for their fur, big males sometimes grew eight feet long, or 2.4 meters. Those lengths don’t even include the tail. The giant otter is brown or reddish in color, but when it’s wet it looks black. It has a white pattern on its throat that individuals use to identify each other, because unlike other otters, the giant otter is social, communicates with its clan members with whistles and other noises, is mostly active during the day, and can be aggressive. All this sure sounds like the dobhar-chú. The only problem is, the giant otter lives in South America, an entire ocean away from Europe.

Could a similar species of giant otter have once lived in Ireland and Scotland? We don’t have very many otter fossils, unfortunately–but we do have a recently discovered fossil of a new otter species from China. It’s been named Siamogale melilutra and it’s twice the size of the giant otter. From its teeth, it probably ate a lot of freshwater shellfish. The fossil dates to 6.24 million years ago, so it’s not likely that it was running around in Ireland in the early 18th century. But it’s interesting to know that really big otters did once exist in Asia, so it’s always possible that a species of rare giant otter also lived in parts of Europe until fairly recently.

Of course, it might be that the dobhar-chú really is just a folktale and not based on a real animal at all. Some accounts of a king otter say it’s the seventh cub of an ordinary otter, and the king otter’s magical attributes also push it farther into the realm of folklore than objective reality. It’s also possible that the dobhar-chú and the king otter are completely different animals, one real, one a folktale, with some confusion between the two since that’s just how people think.

I’m inclined to think that might be the case. So if we assume that the dobhar-chú is just an unusually large otter, does it fit the reported story? Do otters ever attack people?

Otter attacks are extremely rare, and usually only occur if a mother otter feels someone is threatening her cubs. In North America, where the river otter is very similar to the Eurasian otter, only 44 documented cases of an otter attacking a human have been recorded since 1875. Then again, when an otter does attack it can actually kill a human. Heck, the North American river otter occasionally kills alligators. An otter’s bite is similar in strength to that of a big dog, and it will chase people for at least a short distance if provoked. It can run 18 mph, or 30 km per hour. Usain Bolt can sprint 28 mph, or 45 km per hour, but most of us are a lot slower no matter how motivated we are.

In August of 2016, a Quebec woman swimming in a lake was attacked by an otter that repeatedly bit her legs until she managed to reach a dock with a ladder. Fortunately the otter didn’t chase her once she left the water. Needless to say, this is extremely unusual behavior for an otter, but it does happen. In 2014 an eight-year-old boy and his grandmother were swimming in a river in Washington state when an otter attacked the boy. When his grandmother came to his rescue, the otter turned on her. In 2013 a woman swimming in Yellowstone National Park was bitten and clawed by an otter. Her face, arms, and hands were bitten and some bones in her right hand broken. Fortunately, all these people recovered fully, but all of them had to spend time in the hospital.

So if Grace Connolly was in the lake back in 1733, bathing or washing clothes, and an otter took exception to her presence, it might well have killed her. The rest of the story might be embellishment or the otter might have also chased or attacked Grace’s husband before he managed to kill it. Either way, I don’t think we need to hypothesize about a rare giant otter in this case. A regular otter in a bad mood is scary enough.

Those little guys are cute as all get out, but don’t get too close. They bite.

Next week we’ll take a look at another water monster, this one from the sea–a weird and hideous two-legged fish thing–as we get closer and closer to Halloween.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on iTunes or whatever platform you listen on. We also have a Patreon if you’d like to support us that way. Rewards include stickers and twice-monthly bonus episodes.

Thanks for listening!

Episode 034: Saber-Toothed Animals

This week we’ve got a heaping helping of animals with big pointy teeth! Whether you spell it saber or sabre, you don’t want teeth of that description biting you.

Smilodon is the best saber-toothed cat:

Thylacosmilus’s weird chin bone:

Thylacosmilus might have looked something like this when alive:

Kolponomos might have looked something like this when alive:

And the sabertooth fish is still alive!

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

For this week’s episode, we’re looking at saber-toothed animals. The animal people generally think of as THE saber-tooth cat, or saber-tooth tiger, is Smilodon fatalis. Smilodon and its relatives were members of the feline family, although not very closely related to the big and little cats living today. We have a whole bunch of Smilodon fossils, many from the La Brea tar pits in California.

Smilodon was probably descended from a saber-tooth cat called Megantereon, which lived in North America, Eurasia, and Africa. It might have still been around only half a million years ago, was definitely around as recently as 2.5 million years ago, definitely around as long as 4.5 million years ago, and recent finds have been tentatively dated to 7 million years ago. So Megantereon was a very successful animal. It was stocky with strong forelimbs and neck, with long upper canines—not as big as Smilodon’s, but certainly saber-toothed. It wasn’t a giant cat, probably close to a jaguar in size, with males probably being around 5 or 6 feet long (or around 1.5 meters) not including the tail and a little over 2 feet high at the shoulder, or 72 cm. It probably killed its prey by leaping on it and biting its throat.

Megantereon probably acted a lot like a leopard, including climbing trees, but its descendant, Smilodon, was too heavy for tree-climbing. Smilodon was a big, tough kitty about the size of a modern lion. It lived in North America, and migrated into South America at some point too. It probably looked more like a bear than a cat since it was stocky, heavily muscled, and had a broad head and jaws that could open much wider than modern cats’.

Smilodon cubs didn’t have saber teeth. A cub only started growing its big teeth when it was around a year and a half old, and by around three years old the fangs were fully grown, about 7” long or 18 cm. Very few remains of young Smilodons have been found in the La Brea tar pits, so researchers think cubs were mostly fed and cared for by their mother until they had fully grown fangs and had learned to use them.

For a long time researchers thought Smilodon lived in forested areas, but recent studies show that it probably preferred open areas. One 2016 study compared carbon and nitrogen isotopes found in collagen samples from bones of Smilodon and other predators with those of prey animals in South America to find out what they were eating. It turns out that Smilodon ate a lot of Megatherium and other giant ground sloths, as well as a camel-like ungulate called Macrauchenia. There’s even some evidence that Smilodon may have hunted in family groups. Overall, the finding suggests that Smilodon lived a lot more like modern lions do than like other big cats.

The first Smilodon fossils found date to around 2.5 million years ago, but remains found in Florida dated to 5 million years ago have recently been described as a related saber-toothed cat. Smilodon lived until only 10,000 years ago at the end of the Pleistocene. It preyed on ice age megafauna and researchers think it may have died out when its main prey animals went extinct. Humans probably had something to do with their extinction too.

Smilodon wasn’t the only big predator in North America during the ice age, though. It wasn’t even the only big feline predator. It shared its territory with the American lion and the American cheetah. Neither of those had saber teeth but they’re awesome so I’m going to tell you a little bit about them anyway.

The American lion died out at the same time as much of the other ice age megafauna, around 11,000 years ago. Unlike Smilodon, it’s closely related to modern big cats—in fact, most researchers consider it a subspecies of the modern African lion. We don’t know for sure if the males had manes, but we do know that the American lion was much bigger than modern lions although not as heavy as Smilodon. It probably stood almost four feet tall at the shoulder, or 1.2 meters. Remains of American lions have been found in the La Brea tar pits so we know they shared territory with Smilodon.

The American cheetah lived on the prairies of North America. Its body plan resembled the modern cheetah’s and it was built for speed, but researchers aren’t sure if it was actually closely related to the modern cheetah. It may be more closely related to the cougar. It was a little larger and heavier than a modern cheetah. Either way, it’s probably the reason why pronghorn antelopes are so fast. They can run over 55 miles per hour or 88 km per hour, much faster than gray wolves and cougars, their current predators. The American cheetah died out around 12,000 years ago.

There are a lot of saber-toothed cats known to science, all related to Smilodon. But there are other animals with similar teeth that are unrelated to the saber-toothed cats. Thylacosmilus atrox looked superficially like a saber-toothed cat. It lived in South America, with most fossils found in Argentina, and went extinct close to three million years ago, long before Smilodon appeared in South America. But Thylacosmilus wasn’t a feline at all. It wasn’t even slightly related to felines. In fact, it was a marsupial, sometimes called a pouched saber-tooth because marsupials keep their babies in pouches, like kangaroos and possums.

Thylacosmilus was about the same size as Megantereon or a modern jaguar. Its saber-like canines were bigger than Smilodon’s and had roots so deep they were practically pressed up against the braincase. But it had something no saber-toothed cat had. Its lower jaw had a pair of bony downward projections called flanges. Think of it as a chin that went horribly wrong. The chin bones pointed downward at the same angle that the fangs pointed downward, and apparently protected them. Researchers aren’t sure if the fangs were actually inside the mouth or just pressed up against the outside of the chin.

Like Smilodon and its relatives, Thylacosmilus had immensely powerful forelegs that it used to grapple prey. But its jaws were weak. Smilodon’s jaws were much weaker than a big cat’s, but Thylacosmilus literally couldn’t outbite a domestic cat. Researchers think it grappled and subdued its prey with its forelegs, then delivered a precision bite with its fangs that severed the animal’s windpipe or major neck arteries. To do this, it didn’t need a strong bite, it needed strong neck muscles, and that’s exactly what it had.

Kolponomos was another saber-toothed animal, totally unlike Smilodon except for its teeth and powerful neck muscles. It’s related to bears, but that branch of the bear family also gave rise to pinnipeds like seals. Kolponomos lived around 20 million years ago along the Pacific coast and used its fangs not to bite the necks of its prey, but to pry shellfish off of rocks. Its snout was narrow and sloped downward, but we don’t have a complete skeleton so we don’t know how big it was or what it really looked like, but it probably resembled a buff sea otter with big fangs more than a seal or bear.

Clearly, saber teeth have evolved multiple times in different types of animals to serve different purposes. They’re not a recent development, either. 250 million years ago, just before dinosaurs evolved and took over the world. An animal called a gorgonopsid, or gorgon for short, lived in what is now Africa and Eurasia. Not a whole lot was known about it until 1998 when a very nearly complete skeleton was discovered in South Africa.

Complete skeletons are almost never found in the fossil record. Dinosaur and other animal skeletons displayed in museums are usually assembled from different individual animals. Sometimes a particular bone has never been found at all so scientists have to make an educated guess. But this gorgon looked like it had died and just flopped over. Nothing ate parts of it, nothing scattered its bones after it decayed. There it was, just waiting for the paleo team to find it.

Gorgon wasn’t a mammal. It wasn’t exactly a reptile either. It was a precursor to mammals, a reptilian creature with mammalian characteristics. It resembled a lion crossed with a monitor lizard, although researchers aren’t sure if it had actual fur or both bristles and scales. It was big—some ten feet or 3 meters long with saber-tooth fangs nearly 5” or 12 centimeters long. Reptiles living today have legs that stick out from the sides of their bodies, so when they walk their bellies are very close to the ground, but gorgon’s stance was different. Its walk probably resembled what’s called the “high walk” of crocodilians, where the gator lifts its body and tail off the ground entirely to walk more easily and quickly on land. Researchers think gorgon hunted by ambushing its prey and delivering a massive bite, then retreating to wait for the injured animal to weaken. This is similar to how komodo dragons hunt.

Gorgon died off in the Permo-Triassic extinction event 250 million years ago. Everyone knows about the Cretaceous-Paleogene extinction that ended the rule of the dinosaurs, but the Permo-Triassic extinction was even worse. More than 95% of all marine animals died out, and some 70% of land animals. Even a lot of insects went extinct, and some evidence suggests that a lot of plants went extinct too. Scientists don’t know what caused the extinctions, but it might have been a meteor strike like the one generally accepted to have caused the Cretaceous-Paleogene event. Whatever happened, it hit marine life hard because the oceans became extremely acidic due to increased CO2 levels in the air and the increased temperature at the ocean’s surface in many areas—104o F or 40o C. It took millions of years for the oceans to recover.

So far all the animals in this episode are extinct. While a lot of living animals have fangs of one kind or another, there don’t seem to be any that use their fangs the way saber-toothed cats did. But I don’t want to leave you after saying, “Yeah, something happened and everything DIED,” so I’ll finish up by talking about the sabertooth fish, of the family Evermannellidae. It’s alive and it’s wonderfully creepy.

The sabertooth fish lives in the depths of tropical and subtropical waters. It has tubular eyes that point upwards so it can see its prey, mostly squid, silhouetted against the far-off surface. It’s grayish-brown in color with a greenish iridescence. Its fins are brown. It has smooth skin without scales and a big mouth that can open extremely wide, which is good because the sabertooth fish can swallow prey that’s actually bigger than it is. Its stomach distends to hold whatever can fit down its gullet. This sounds terrifying, especially when you look at its teeth, but keep in mind that it’s only about seven inches long, or 18 cm. It has two pairs of curved fangs, one in the upper jaw, one in the lower, with smaller teeth in the back of its mouth. If you’ve ever tried to catch a living squid with just your mouth—and I really hope you have not—you’ll probably have noticed that it’s hard to keep the squid from slithering away. Wouldn’t some saber teeth help with that? The sabertooth fish thinks so.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on iTunes or whatever platform you listen on. We also have a Patreon if you’d like to support us that way. Rewards include stickers and twice-monthly bonus episodes.

Thanks for listening!

 

Episode 033: Dunkleosteus, Helicoprion, and their weird-toothed friends

This week we’ll learn about some terrifying extinct fish, the armored dunkleosteus and the spiral-toothed helicoprion, plus a few friends of theirs who could TEAR YOU UP.

Dunkleosteus did not even need teeth:

Helicoprion had teeth like crazy in a buzzsaw-like tooth whorl:

Helicoprion’s living relatives, chimaeras (or ghost sharks) are a lot less impressive than they sound:

Helicoprion probably looked something like this:

But helicoprion has been described in all sorts of wacky ways over the years:

So what are the odds this rendition of edestus is correct? hmm

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’ve got a listener suggestion! Will B. suggested placoderms, which were armored fish that lived hundreds of millions of years ago. He especially recommended Dunkleosteus. I looked it up and went, “Oh holy crap,” so you bet we’re going to learn about it today. I’m also pairing that terrifying fish with a really weird shark relation called Helicoprion. And we might even take a look at a few other fishes while we’re at it. Creepy extinct fish for everyone! Oh, and Will asked that I include more metric conversions. [heavy sigh] okay I guess

If you had happened to live around 350 million years ago when Dunkleosteus was alive, you would be a fish. Well, you would probably be a fish. I don’t know for sure. That was during the Late Devonian period, and the Devonian is remembered as the “age of fish” by undergraduate geology and palaeo students everywhere. While land plants were evolving like crazy, developing true roots and seeds, fish were even crazier. Ray-finned fish evolved during the Devonian and so did lobe-finned fish like coelacanths. The first amphibious critters developed in shallow lakes and started to spend time on land, and in the ocean there were early sharks, lots of trilobites, and a whole lot of armored fish. Including, eventually, dunkleosteus.

Dunkleosteus terrelli was the biggest species of placoderm. It probably grew over 30 feet long OR TEN METERS, WILL, which made it bigger than a great white shark. But dunkleosteus didn’t have teeth. And before you think, oh, it must have been a filter feeder or something, oh no. It didn’t need teeth. Instead it had bony plates like a gigantic beak. It could open and close its jaws incredibly fast—something like one 50th of a second—and could bite through armor and bone no problem. One article referred to its jaws as sheet-metal cutters. Scientists think its bite was as powerful as that of a T rex, although it didn’t quite match that of megalodon, but since T rex and megalodon both lived many millions of years later than Dunkleosteus, it’s useless to speculate who would win in a fight. But my money’s on Dunkleosteus.

Dunkleosteus wasn’t a fast swimmer. Its head was covered in heavy armor that probably served two main purposes. One, the armor plates gave its massive jaw muscles something substantial to attach to, and two, it kept its head safe from the bites of other placoderms. That’s right. Dunkleosteus was a cannibal.

We actually don’t know exactly how long Dunkleosteus was or what most of its body looked like. The only fossils we’ve found were of the head armor. We do have complete fossils and body impressions of other, much smaller placoderms, so since all placoderms seemed to have the same body plan we can make good guesses as to what Dunkleosteus looked like.

One surprising thing we do have associated with Dunkleosteus fossils are some remains of its meals. These are called fish boluses, and they’re basically just wads of partially-digested pieces of fish that either get horked up by whatever ate them or pass through the digestive tract without being fully digested. From the fish boluses, we know that Dunkleosteus probably preferred the soft parts of its prey and didn’t digest bones very well.

In 2013, a fossil fish over 400 million years old was described that combines features of a placoderm skeleton with the jaw structure that most bony fishes and four-footed animals share. Some other early bony fishes discovered recently also show some features of placoderm skeletons. What does that mean? Well, until these discoveries, researchers had thought bony fishes weren’t very closely related to placoderms. Now it looks like they were. And that means that placoderm jaws, those fearsome cutting machines, were actually the basis of our own jaws and those of most animals alive today. Only, in our case they’re no longer designed to shear through armor and bone. Maybe through Nutter Butters and ham sandwiches instead.

So what happened to dunkleosteus? Around 375 million years ago something happened in the oceans—not precisely an extinction event, but from our perspective it looks like one. Even without human help species do go extinct naturally every so often, and when that happens other species evolve to fill their ecological niches. But during the late Devonian, when species went extinct in the ocean… nothing took their place.

We don’t know what exactly was going on, but researchers have theories. One suggestion is that, since sea levels were rising, marine environments that were once separated by land got joined together. Species that had evolved in one area suddenly had access to a much bigger area. They acted like invasive species do today, driving native species to extinction and breeding prolifically. They kept new species from developing, and caused a breakdown in the biodiversity of their new territories. This only happened in the oceans, not on land, which adds credence to the theory.

It took a long, long time for the oceans to fully recover. For example, coral reefs disappeared from the fossil record for 100 million years as corals almost died out completely. But the animals that had already started evolving to take advantage of life on land survived and thrived—and that led to us, eventually. Us and our little unarmored jaws.

From Dunkleosteus and its sheet-metal cutter beak let’s go to another fish that looked like a shark but had teeth that are so bizarre I can’t even understand it. Helicoprion and its tooth whorl have baffled scientists for over a century.

The various species of Helicoprion lived around 290 million years ago. Like sharks, only its teeth are bony. The rest of its skeleton is made of cartilage, which doesn’t preserve very well.

So what’s a tooth whorl? It resembles a spiral shell, like a snail’s, only made of teeth. I’m not even making this up. Originally people actually thought they were some kind of weird spiky ammonite shell, in fact. Then someone pointed out that they were made of teeth, but no one could figure out what earthly use a circular saw would be if you were a fish and just wanted to eat other fish. Where would you even keep a circular saw of teeth?

Various suggestions included putting the tooth whorl at the very end of the lower jaw, just sort of stuck out there doing nothing; putting the tooth whorl way in the back of the throat where I guess it would cut up fish as they went down; on the snout, on the back, or even on the tail, which are not places where teeth typically do much good. Originally researchers thought the tooth whorl was probably a defensive trait, but now it’s accepted that it was used the way the rest of us use our teeth, which is to eat things with.

The smallest teeth in a tooth whorl are on the inside curls and the biggest are on the outside. Eventually researchers realized the small teeth were from when the individual was a baby fish and had little teeth. Like sharks, helicoprion kept growing teeth throughout its life. Unlike sharks, it didn’t lose its old teeth when the new ones grew in. The older, smaller teeth were just pushed forward along the curve of the whorl and eventually were buried within the animal’s jaw, with only the biggest, newest teeth actually being used.

In 1950 a crushed tooth whorl was found with some cranial cartilage, so scientists knew that the whorl was associated with the head and wasn’t, for instance, on the dorsal fin. That fossil was found in Idaho and consisted of 117 teeth. The whorl was 23 cm in diameter, or about 9 inches across, although slightly larger ones have been found. In 2011 the fossil was examined with a state-of-the-art CT scanner and a 3D computer model generated of the animal’s skull.

Researchers think they have a pretty good idea of what a living helicoprion’s head and jaws looked like. The tooth whorl was fused with and extended the full length of the lower jaw. It grew inside the mouth roughly where the tongue would be if it had a tongue, which it did not. Helicoprion didn’t have teeth in its upper jaw, so the tooth whorl acted less like chompers than like a meat slicing machine. When it closed its mouth, the tooth whorl was pushed back a little and would therefore slice through any soft-bodied prey in the mouth and also force its prey deeper into its mouth. Helicoprion probably ate small fish, cephalopods, and other soft-bodied organisms.

Since we don’t have any fossils or impressions of helicoprion’s body, we don’t know for sure what it looked like, but researchers estimate it probably grew to around 13 feet or 4 meters, but may have possibly exceeded 24 feet or 7.5 meters.

For a long time researchers thought helicoprion was a shark, but it’s now classified as a type of chimaera, which are small weird-looking shark-like fish known also as ghost sharks, spookfish, ratfish, and rabbit fish. I’m going to call them ghost sharks because that’s awesome. They’re not that closely related to sharks although they do have cartilaginous skeletons, and most species like the ocean depths. Ghost sharks have been spotted at depths of 8,500 feet, or 2,600 meters. The longest any species grows is around 5 feet, or 150 cm. Unlike helicoprion, they don’t have exciting teeth. They don’t really have teeth at all, just three pairs of tooth plates that grind together. Some species have a venomous spine in front of the dorsal fin.

While we’re talking about shark-like fish with weird teeth, let’s discuss Edestus, a genus of shark-like fish with weird teeth that lived around 300 million years ago, around the same time as dunkleosteus. It was related to helicoprion but it didn’t have a tooth whorl. Instead it had one curved bracket of teeth on the lower jaw and one on the upper jaw that meshed together like pinking shears. You know what pinking shears are even if you don’t recognize the name. Pinking shears are scissors that have a zigzag pattern instead of a straight edge, so you can cut a zigzag into cloth but not paper because do not dare use my pinking shears for anything but cloth. It dulls them.

Anyway, like helicoprion Edestus didn’t shed its teeth but it did grow new ones throughout its life, so like helicoprion it had a bunch of teeth it no longer needed. In Edestus’s case we don’t have any bits of skull or jaw cartilage to give us a clue as to how its teeth sat in its jaw. A lot of scientific art of Edestus shows a shark with a pointy mouth, where the upper point curves upward and the lower point curves downward with teeth sticking out from the middle. Sort of like an open zipper, if the zipper part was teeth and the non-zipper side was a shark’s mouth. To me that looks sort of ridiculous, and I suspect in reality Edestus looked a lot more like helicoprion. The downward and upward curved parts of the tooth arc was probably buried within its jaw, not sticking out. But that’s just a guess based on about 30 minutes of research.

Researchers estimate that the largest species of Edestus probably grew to about 20 feet long, or 6 meters. No one’s sure how or what it ate, but one suggestion is that if its teeth did project out of its mouth, it might have slashed at prey with its teeth sort of like a swordfish slashes prey with its elongated beak. Hopefully scientists will find a well preserved specimen one day that will give us some clues as to what Edestus looked like, at which point I bet the drawings we have now will look as silly as helicoprion with a tooth whorl perched on its nose.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on iTunes or whatever platform you listen on. We also have a Patreon if you’d like to support us that way. Rewards include stickers and twice-monthly bonus episodes.

Thanks for listening!

Episode 032: Some New Zealand birds

This week’s episode is about several New Zealand birds, from the still-living kiwi to the mmmmmaybe extinct moa! Note: I’m going to start putting a full transcript of each episode in the show notes for those who would like to know what words I’m mispronouncing and for those who may have hearing issues. Transcripts will be below the pictures.

A kiwi:

Superman has fought everything.

The controversial blurry “moa” picture taken by Freaney. Probably not a moa.

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Before we get started, apologies for my voice. About the time I finally got over the cough I picked up at WorldCon in Finland, I went to DragonCon in Atlanta and got a big juicy cold. Hopefully I don’t sound too gross. My traveling for the year is over so I’m looking forward to having time to really dig into some fun topics for the podcast. In particular, I’m going to be covering some of the creepier strange animals in October, because Halloween is the best. And yes, Bigfoot is going to make an appearance.

This week’s episode is about some amazing birds from New Zealand. We learned about the takahe way back in episode seven, a big silly-looking flightless bird that was once thought extinct until its rediscovery in the middle of the last century. This week we’ll look at some other birds, some of them happily alive, some that are definitely extinct. At least, we’re pretty sure they are.

New Zealand wasn’t settled by humans until the late 13th century, only about 750 years ago. That’s mind-blowing until you take a look at a globe. New Zealand isn’t just a hop skip and jump away from Australia, it’s 900 miles away over open ocean. It’s 600 miles away from the Pacific Islands. That’s a long, long trip to make in a small boat, especially when you’re not sure if there’s any land out that way. But sometime between the years 1250 to 1300, people from eastern Polynesia discovered this new land. They liked it and stayed, and their descendants are now known as the Maori.

I know we’ve been talking about tectonic plates in a number of episodes recently. I haven’t done it on purpose—it’s just part of learning how and why different animals developed in different places. It’s definitely relevant when it comes to New Zealand.

New Zealand is just a little part of an otherwise submerged continent called Zealandia, or sometimes Tasmantis, which I actually prefer. Tasmantis. If Zealandia weren’t mostly under the ocean, it would be about half the size of Australia. Around 90 million years ago Zealandia, Australia, and Antarctica were all part of the supercontinent Gondwana. As Gondwana broke up, Zealandia separated from Antarctica and Australia around 80 million years ago, then slowly sank into the ocean.

After Zealandia separated from Gondwana, a cataclysmic event, probably a humongous meteor strike, led to the extinction of some 85% of the animals on earth. In most of the world, mammals began to evolve like crazy to fill the vacant ecological niches after the dinosaurs died off. But Zealandia didn’t have very many mammals to start with, and by 25 million years ago it was mostly underwater anyway except for the peaks of New Zealand, which were being pushed up slowly by tectonic forces—a process that’s still ongoing.

When travelers from Polynesia first landed on New Zealand, the only mammals on the islands were three species of bat. But there were birds in abundance, from enormous moas and eagles to tiny kiwi. Almost every ecological niche was filled by a bird.

Europeans first visited New Zealand in 1642. It didn’t go well and no one came back until 1769, and after that things got messy and lots of people died from war and introduced diseases. Around the mid-19th century Europeans started moving to New Zealand. Between them, the Maori, and introduced mammals like rats and dogs, a whole lot of birds went extinct.

I just want you to know that it took me hours and hours and hours to research all that stuff about Zealandia. Hopefully I got it right. I’m ready to talk about birds now.

Let’s start with a bird that is so unique to New Zealand that you’ll sometimes hear people call New Zealanders kiwis. There are five species of kiwi, all of them rare and protected. They’re round brown poofs of birds with long legs and long bills, and they eat worms, insects, seeds, fruit, frogs, and other things like that. They prefer to live in forests and usually mate for life, and can live for 50 years.

The kiwi has a lot of unusual characteristics. It’s flightless but has wings less than an inch long hidden under its feathers. Each wing has a tiny claw at its tip that doesn’t seem to have a use. The kiwi has no tail. Unlike every other bird out there, its nostrils are at the tip of its bill. The kiwi has a good sense of smell and may detect worms and other underground prey by smell, which should make you pause and wonder what earthworms smell like. The kiwi also has sensory pits at the tip of its bill that helps it detect vibrations, though, so it’s possible its good sense of smell is less important than researchers previously thought. When a kiwi detects its prey, it stabs its bill into the ground to catch it, which frequently leads to the kiwi later having to snort dirt out of its nostrils. Evolution does what it can, folks, but it’s not perfect.

Since it can’t fly and doesn’t need flight feathers, the kiwi’s feathers are hair-like and downy. But most curious of all is its egg. The kiwi is about the size of a chicken, but its egg is six times the size of a chicken egg and can weigh an entire pound. It’s so big that the female can’t even eat the last few days before she lays the egg. There’s no room in her body for food.

After the female lays her egg, the male incubates it. That huge egg has a huge yolk to feed the baby inside, so when the baby kiwi hatches, it’s ready to go. After a few days it leaves the nest and starts foraging, usually with its dad alongside for the first few weeks. It takes several years for it to grow to adult size.

The kiwi is territorial and will fight other kiwis that stray into its territory. Only its mate and its own offspring are allowed in its territory. It has powerful legs with claws that can inflict quite a bit of damage, and it can run faster than a human.

Scientists used to think the kiwi was closely related to moas, which we’ll talk about in a minute, but DNA studies have determined that its closest relative is the extinct elephant bird of Madagascar—and the elephant bird is the topic for a future episode.

The Maori describe a huge black swan called a Pouwa that lived in the Chatham Islands, but it had already gone extinct by the time Europeans arrived in the area in the late 1700s. Until recently researchers thought it was just the Australian black swan, either a population that lived in New Zealand or the occasional individual that flies across the Tasman Sea. Australian black swans were introduced to New Zealand in the 1860s.

But a recent study of DNA from fossilized swan remains from New Zealand show that it wasn’t the same bird as the Australian black swan but a related species. Around one or two million years ago Australian black swans lived in New Zealand and evolved into a separate species, heavier than the Australian birds with longer legs and shorter wings. It might have been a poor or reluctant flier and might have been on its way to evolving into flightlessness before it was eaten into extinction by the Maori.

The big name in extinct birds of New Zealand is the moa. Nine species of moa are recognized today, although in the past researchers thought there were a lot more. It turns out that female moas of some species were much larger than the males, so much so that scientists once thought they were looking at two different species. Moas were big flightless birds that in shape resembled big flightless birds from other parts of the world, known as ratites, which includes ostriches. Until DNA testing most researchers thought moas were closely related to the ratites of Australia, emus and cassowaries. But no, they are most closely related to a group of birds from Mexico, Central America, and South America collectively called tinamous. Tinamous are a type of ratite, but they can fly. They’re all fairly small and somewhat resemble quail and other game birds that spend a lot of time foraging on the ground.

Moas, however, are big. They are really big. Originally scientists mounted their skeletons so that the neck stuck more or less straight up, but now we know that they held their necks more like ostriches, with a gentle S-shaped curve. Even so, females of the biggest species, the South Island Giant Moa, stood around six and a half feet high at the back. That doesn’t even count the neck. With the neck outstretched, a big female moa could probably reach leaves twelve feet off the ground.

All moas were plant-eaters. Some ate leaves and fruit, others were adapted to digest tougher plant material like twigs, moss, and bark. Unlike other flightless birds, they didn’t have wings at all, not even for display, not even vestigial wings. They just flat-out didn’t have forelimbs. They did have strong legs although they probably couldn’t run very fast, unlike other flightless birds like ostriches. After all, moas didn’t need to run to escape predators. They only had one predator, and that was one they couldn’t outrun: Haast’s eagle.

Haast’s was the biggest eagle that ever lived, although its wings were comparatively short—only around 10 feet wide for big females, closer to 8 ½ feet wide for big males and more average-sized females. Since much of its hunting range was forested, its shorter wings probably helped it maneuver. It had a long tail too. But it had enormous talons with claws over four inches long, and its bill was similarly big. In fact, its talons were so big that its scientific name, Harpagornis moorei, means Moore’s grappling hook bird.

The Haast’s eagle’s prey was the moa, and when moas went extinct after overhunting, the Haast’s eagle went extinct soon after since it just didn’t have anything to eat. It did apparently try to adapt its hunting habits, though. Maori legends tell of the Pouakai, an enormous bird that would sometimes kill humans.

It’s pretty certain that Haast’s eagle is extinct. If it was still around, ranchers would spot it picking off sheep and calves. But the moa is something else. Moa sightings pop up pretty frequently in remote areas of New Zealand.

One of the smallest species of moa, Megalapteryx, also called the upland moa, may have survived on the south island until the mid-19th century. The upland moa was three or four feet tall including the head and neck, and was completely covered with feathers except for its bill and feet, since it lived in the mountainous areas of New Zealand’s south island where the climate was cool. It laid one or two blue-green eggs a year and the male took care of the babies.

Its accepted date of extinction is around the year 1500, but there have been numerous sightings since then. In 1880, Alice McKenzie, who was then seven years old, saw a three-foot-tall bird with blue feathers, dark green scaled legs, and three claws on each foot. She ran to get her father, but when they returned the bird had gone, although it had left big tracks in the sandy soil. She saw the same bird again in 1889.

The problem with this sighting is that the upland moa had feathered legs, and as far as we know no moas had blue plumage. We have plenty of upland moa feathers, which are grey, black and white. We even have mummified upland moa remains. Not only did Alice describe her bird as blue, she specifically noted it was the blue of a pukeko, which has vibrant plumage that varies from navy blue to violet. This wasn’t a grayish-blue bird. Alice herself thought, later in life, that she might have seen a takahe, which is also blue, but after the takahe was rediscovered she went to view some and was disappointed. They have red legs and she knew her bird’s legs were green.

But that’s not the only sighting. In addition to the sporadic accounts of big birds seen in the distance, in 1993 three men hiking in the Craigieburn Range saw what they described as a red-brown and gray moa some six feet high, including its neck. It ran off when it saw them, but one of the men, Paddy Freaney, ran after it and managed to get a photograph. He also got a few pictures of its footprints where it had stepped in a stream and then on a rock.

The picture is frustrating, to say the least. It’s so out of focus that it could be anything. However, I agree with one of the experts who have examined the photo, palaeoecologist Richard Holdaway, who says the figure’s neck is too thick for a moa. He thinks the picture is probably of a red deer. As far as I can find, Freaney’s photos of the footprints haven’t been released.

In 2007, a pair of cryptozoologists searching for moas in the hill country of the North Island spotted 35 footprints and what appeared to be a nest that they claimed were made by a group of moas, possibly a lesser moa. But considering that the pair of cryptozoologists are Rex and Heather Gilroy, who are notorious for being secretive, vague in their claims of evidence, and somewhat paranoid about their findings, I don’t expect them to show up with a live moa anytime soon. No other moa sightings or even rumors of moas living in the area have ever been uncovered.

It’s easy to dismiss this account, and the others, as wishful thinking, misidentification, and in some cases maybe outright hoaxes. Australian emus are raised in some areas of New Zealand and sometimes escape from captivity, too, which confuses the issue, since emus are big flightless birds that could easily be mistaken for moas at a distance. But there is something that makes me hopeful that the moa might still be around, especially one of the smaller species.

New Zealand’s south island is much less populated than its north island. Alice McKenzie’s sighting in 1880 was on her family’s farm near Milford Sound, which is now part of Fiordland National Park. This is a big nature reserve in the southwest corner of the south island, with rugged terrain and very few tracks passable to even offroad vehicles. The park includes the Murchison Mountains, which is where the takahe was rediscovered in 1948 after being thought extinct. So it’s entirely possible that a small species of moa might be hiding in the area. Maybe one day someone will get a really good picture—or better yet, a hiker or park ranger might come across a newly dead moa carcass and can bring it back for study.

We do have some subfossil moa remains that aren’t just skeletons and feathers. Dessicated body parts turn up occasionally, which has helped with DNA testing and our knowledge of what the living birds looked like. The moa is a good candidate for de-extinction by genetic cloning, and it would be really neat to have moas for sure running around in New Zealand again, so scientists can get right on that as far as I’m concerned.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on iTunes or whatever platform you listen on. We also have a Pattreon if you’d like to support us that way. Rewards include stickers and twice-monthly bonus episodes.

Thanks for listening!