Episode 228: Monkey Lizards and Weird Turtle…Things

Sign up for our mailing list!

We have a merch store now too!

Thanks to Ethan for this week’s topic, two weird animals that developed after the Great Dying we talked about last week!

Further reading:

Monkey Lizards of the Triassic

Placodonts: The Bizarre ‘Walrus-Turtles’ of the Triassic

Drepanosaurus (without a head since we haven’t found a skull yet, but with that massive front claw):

Drepanosaurus’s tail claw:

Hypuronector had a leaf-like tail:

Placodus was a big round-bodied swimmer:

Some placodonts [art by Darren Naish, found at the second article linked above]:

Henodus was the oddball placodont that probably ate plant material:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

 

Last week we talked about the end-Permian mass extinction, also called the Great Dying. This week let’s follow up with a couple of weird and interesting animals that evolved once things got back to normal on Earth. Thanks to Ethan who suggested both animals.

 

The great dying marks the end of the Permian and the beginning of the Triassic period, which lasted from about 251 million years ago to 201 million years ago. In those 50 million years, life rebounded rapidly and many animals evolved that we’re familiar with today. But some animals from the Triassic are ones you’ve probably never heard of.

 

We’ll start with a reptile called the drepanosaur. Drepranosaurs are also sometimes called monkey lizards for reasons that will soon become clear. Paleontologists only discovered the first drepanosaur in 1980, Drepanosaurus, and within a few years they recognized a whole new family, Drepanosauridae, to fit that first discovery and subsequent closely related specimens. Drepanosaurs were weird little reptiles that probably looked like lizards in many ways, although they weren’t lizards.

 

How weird was Drepanosaurus? Very weird. Very, very weird.

 

It was obviously a climbing animal that probably spent all of its life in the treetops. It had lots of adaptations to life in trees, such as hind feet where all the toes pointed in the same direction and were somewhat curved, sort of like a spider monkey’s hand. That would help it get a good grip on branches. But those hind feet aren’t why it’s called the monkey lizard.

 

Drepanosaurus and its relatives are called monkey lizards because of their tails. Many monkeys have prehensile tails, which act as a fifth limb and help keep the monkey stable in a tree by curling around branches and hanging on. Drepanosaurus had something similar. Instead of being mobile from side to side like most reptile tails, Drepanosaurus’s tail could mostly only curve downward. Modern chameleons have an even more pronounced downward-curving tail that helps them climb. But the chameleon’s tail is still just a tail. The end of Drepanosaurus’s tail had several modified caudal bones that were probably exposed through the skin. Those modified bones acted as a claw to help the animal grab onto tree trunks and branches. So Drepanosaurus had claws on its front feet, claws on its hind feet, and a claw on its tail. It’s sort of like having five feet.

 

As if that wasn’t weird enough, let’s talk about those claws on the front feet. It had five toes on each foot, and four of them had ordinary claws. They were sharp but fairly small, about what you’d expect from an animal that grew about 19 inches long at most, or 50 cm. But the second toe on each foot, which corresponds to the pointer finger on a human hand, had a much bigger claw. MUCH BIGGER CLAW. It was as big as its whole hand! Most researchers think it used the claw to dig into rotting wood, insect nests, and bark to find insects and other small animals to eat.

 

But that’s not all. Drepanosaurus also had a structure called a supraneural bone at the base of its neck, made up of fused vertebrae, that would have made it look like it had a little hunch on its shoulders. While we don’t have a skull of Drepanosaurus, since we only have three specimens so far, this structure is also present in other drepanosaur species where we do have the neck and head, and they all have fairly long, slender necks and birdlike skulls with large eyes. It’s possible that the supraneural bone was the attachment site for special muscles that helped Drepanosaurus extend its neck very quickly to grab insects and other small animals.

 

Drepanosaurs in general shared many of the traits seen in Drepanosaurus, although with some differences. Many drepanosaurs had opposing toes on the feet that would help them grasp branches and twigs more securely. Most don’t have the giant claw on the front feet although most do have the tail claw. But one monkey lizard doesn’t live up to its name at all.

 

A little drepanosaur called Hypuronector limnaios, which only grew about five inches long, or 12 cm, had a much different tail from its relations. Its tail didn’t curve downward at all—in fact, it stuck up behind it and was probably not very flexible. Not only was the tail longer than the body and head together, it had long points growing down from the vertebrae, called haemal arches, which made the tail extremely large top to bottom but flattened from side to side.

 

In other words, its tail looked like a leaf. The drepanosaur could cling to a branch with its tail sticking up, and any nearby predators would probably think it was just another leaf growing from the branch, especially if the tail was covered in green skin. Some researchers speculate that it could have used its tail as a sail to glide from branch to branch too, or it might have acted as a parachute if it had to jump from a branch to escape a predator. Hypuronector’s front legs were longer than its hind legs, unlike other drepanosaurs, which suggests it might have had a flap of skin that helped it glide.

 

Drepanosaur fossils have been found in parts of the United States and western Europe, but were probably more widespread than that. We still don’t know a whole lot about them, so every new specimen that’s found can give paleontologists lots of new information. Most drepanosaurs resembled weird chameleons with birdlike heads, but they weren’t related to birds or chameleons. We don’t actually know what they were closely related to.

 

Ethan also suggested placodonts, another reptile that evolved in the Triassic. Don’t confuse them with placoderms, the armored fish that went extinct in the great dying. The “placo” part of both words means tablet or plate. Therefore, placoderms have skin—that’s the “derm” part—covered in plates, while placodonts have flattened teeth, because the “dont” part refers to teeth. That’s why you get braces on your teeth at the orthodontist but you go to the dermatologist for skin problems.

 

What did placodonts do with their flattened teeth? They used them to crush the shells of shellfish and crustaceans. From that you can infer that they were marine reptiles, and you would be right. The earlier species had big round bodies with heavy bones, which helped them dive to the ocean floor to find food. They lived in shallow coastal waters and had large flattened ribs that helped protect them from injury if currents pushed them into rocks. While the teeth in the back of the mouth were flattened to crush shells, the teeth in the very front of the mouth were sharp and pointed forward to grab prey.

 

One of the most common early placodonts was Placodus [PLAK-oh-dus], which grew nearly six and a half feet long, or 2 meters. Its long tail was flattened laterally to help it swim and it probably had webbed toes. Since its legs were small and relatively weak considering how heavy its body was, it probably couldn’t get around very well on land, so it would have stayed close to the water. It probably looked kind of like the modern marine iguana, which we talked about in episode 92, but with longer jaws. On the other hand, unlike the marine iguana, placodus had a third eye.

 

THIRD EYE ALERT! If you remember way back in episode 3, where we talked about the tuatara, we learned a little bit about the parietal eye, or third eye. Parietal eyes are found on the top of a few animals’ heads, including the tuatara, but they aren’t the same as ordinary eyes. They’re very small photoreceptive eyes that can only sense light and dark. In Placodus’s case, researchers think that ability helped it figure out which way was up more easily when it was underwater. If you’ve ever been knocked down by a wave you’ll understand how easy it is to get disoriented underwater.

 

Placodus and other early placodonts had a ridge of bony scutes on the back to help protect it from predators. In later placodonts those scutes were bigger and bigger until they were more like armor, which added weight to the body and meant that the bones didn’t have to be so dense. This meant that instead of having barrel-like bodies, later placodonts were a little more streamlined. Their bodies were more flattened than round, but still broad across with big plates protecting the back. Their legs were more like flippers.

 

Does this make you think of something? Something like a sea turtle?

 

Later placodonts looked a lot like turtles, a classic case of convergent evolution because they weren’t related to turtles at all. If you saw Placochelys, for instance, you’d probably just think it was a weird sea turtle, unless you got a really close look at it. It grew about three feet long, or 90 cm, with a triangular head, a knobby shell, and flippers with clawed toes at the ends. It had a beak like a turtle’s instead of Placodus’s forward-pointing teeth, but unlike a turtle it also had teeth in the back of the mouth. These were still big flat teeth used for crushing shellfish, but like other placodonts the upper teeth grew from the palate, or the roof of the mouth.

 

Other placodonts would have looked strange to us, like Psephoderma. It grew up to six feet long, or 180 cm, and instead of a single turtle shell, it had two shells. One covered its body from the back of the head down to the pelvis. The other covered its pelvis and was smaller. It had a long tail and a pointy nose.

 

At least one placodont didn’t live in the ocean and didn’t eat shellfish and crustaceans. Henodus grew about three feet long, or one meter, and lived in brackish water or possibly freshwater. Its shell was twice as broad as it was long. It also had a lower shell, or plastron, on its belly. Its nose was short and squared-off and it had a turtle-like beak, and instead of teeth it had denticles on the sides of its jaws. Some researchers think it was a filter feeder, filtering tiny animals from the water through the denticles, while other researchers think it may have eaten water plants. It might have done both.

 

There’s a lot we don’t know about placodonts. We don’t know if they laid eggs or gave birth to live young, and we don’t know what exactly they ate. Obviously their teeth were best suited to crushing shells, but we don’t actually know what kind of shellfish they preferred or if they only ate crustaceans or something else. Placodont remains have been found in Europe, the Middle East, and China, but they were probably more widespread than that. During the Triassic, as the supercontinent Pangaea broke up, it created lots of shallow oceans and island chains that would have been ideal for placodonts.

 

Unfortunately for the placodonts, as the landmasses moved farther apart over millions of years, the shallow seas became deeper. Populations would have become isolated from each other. Eventually placodonts went extinct, probably by a combination of habitat loss and competition from other animals as dinosaurs and their relatives spread throughout the world.

 

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way, and don’t forget to join our mailing list. There’s a link in the show notes.

 

Thanks for listening!

Episode 223: The Elephantnose Fish and the Burmese Star Tortoise

Sign up for our mailing list!

This week let’s learn about an amazing little fish and an awesome tortoise! All the pictures here were taken by ME at the Tennessee Aquarium in Chattanooga!

Further Reading:

Star tortoise makes meteoric comeback

The astonishing elephantnose fish:

Burmese star tortoises:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. I’m fully vaccinated now so I’m able to go out and about cautiously, still wearing a mask of course, and this weekend I went to the Tennessee Aquarium in Chattanooga. I had a fantastic time and saw lots and lots of amazing fish and other animals! If you ever get a chance to visit, it’s definitely worth it.

When I got home, I kept thinking about one particular fish. I wanted to learn more about it. So I decided to make an episode about that fish and another animal I saw at the aquarium.

The fish that captivated me so much is called the elephantnose fish. I’d never seen anything like it. The one I saw was about the length of my hand, dark gray or black in color, and looked like a pretty ordinary fish except for the proboscis that gives it its name. The fish has a flexible projection from its nose that it was using to probe around in the gravel at the bottom of its river habitat.

I should mention that the Tennessee Aquarium has enormous displays, beautifully designed to mimic the animals’ natural habitat and give them plenty of room to move around. There’s one tidal animals display in the ocean side of the aquarium where the water sloshes through and around rocks to mimic the tide. It’s fascinating to watch the fish in that exhibit stay pretty much motionless despite the water’s movement, because that’s what they’re adapted for. So there’s plenty of opportunities to see an animal’s behavior.

Anyway, I took lots of pictures of the elephantnose fish and when I got home, I started researching it. It turns out that it’s way more interesting even than I thought!

It lives in rivers and other freshwater in central Africa and grows up to 9 inches long, or 23 cm. That’s according to the info display next to the exhibit. The display also said the fish was a species called Peter’s elephantnose fish, although it’s possible they have more than one species on display. There are a lot of elephantnose fish, more properly called mormyrids or freshwater elephantfish, and many of them have this interesting proboscis.

The proboscis isn’t actually a nose like an elephant’s trunk. It’s technically a modified chin and mouth, called the Schnauzenorgan. The elephantnose fish mostly eats small worms and insect larvae, and it especially loves mosquito larvae.

The elephantnose fish uses electroreception to navigate the muddy waters where it lives and find food. Its whole body, and especially its Schnauzenorgan, is covered with electrocyte cells that can detect tiny electrical pulses. If you remember way back in episode ten, about electric animals, many animals can sense the weak bioelectrical fields that other animals generate in their nerves and muscles. It’s especially common in fish since water conducts electricity much better than air does. But the elephantnose fish also generates a stronger electric field of its own, which it uses as a sort of sonar. It generates the field in special electric organs in its tail, and as it moves around in the water, the electric field comes in contact with other things—plants, rocks, other fish, and so on. It’s not strong enough to give an animal a shock, but it’s strong enough for the elephantnose fish to easily sense changes in its environment. The fish can tell what it’s near because its electrical field interacts differently with different things. A rock, for instance, doesn’t conduct electricity so the fish probably senses it as a blank spot in its electrical field, while a plant may conduct electricity even better than water and therefore changes the shape of the fish’s electrical field in a particular way. But it doesn’t generate its bioelectric field all the time. It can control when it discharges pulses of electricity the same way a dolphin can control when it sends out pulses of sound. If the fish feels threatened, maybe by another elephantnose fish nosing in on its territory, it will pulse much faster so it can keep tabs on what the other fish is doing—plus, of course, the other elephantnose fish can sense its pulses and can interpret how aggressive the first fish is. Female elephantnose fish generate a slightly different electrical field than males, which allows males and females to find each other to spawn.

You may be thinking about all this and wondering how the elephantnose fish can sense the tiny bioelectric charges of its tiny prey over its own electric field. Its electric field is much stronger than that of a teensy worm hiding in the mud, after all. It would be like trying to hear a bird chirping outside through a closed window while someone is playing music really loudly in the room you’re in. It turns out that the elephantnose fish is able to filter out its own electrical field so it can sense other things—but at the same time it’s still able to navigate using its electrical field.

The elephantnose fish needs a large brain to interpret all these complicated bioelectrical signals, and it has a brain to body size ratio equivalent to birds and possibly equivalent to primates. It’s not a social fish, and intelligence seems to develop from complex social interactions, although the fish is considered pretty intelligent. I mean, generally fish are not masterminds, so it’s not hard to be considered an intelligent fish, but the elephantnose fish has the brainpower to pull it off.

The elephantnose fish lives along the bottom of rivers and ponds, usually murky ones, and is mostly nocturnal. For a long time researchers thought it probably couldn’t see very well. It turns out, though, that it sees extremely well. Its retina is made up of cup-shaped cells that act like tiny mirrors, reflecting light and concentrating it so it can see better even in low light.

The elephantnose fish is a popular pet, but it is hard to keep. You have to really know what you’re doing and have a really big aquarium that’s set up just right. The males are aggressive toward each other and while the fish isn’t threatened in the wild, from what I could find out it has never bred in captivity.

Speaking of breeding in captivity, our other animal this week isn’t a fish but a reptile. It’s called the Burmese star tortoise and unlike the elephantnose fish, it’s critically threatened in the wild. It also doesn’t have a Schauzenorgan and instead just has a short little snub nose and lives on land in dry forests in Myanmar. It’s basically the opposite of the elephantnose fish.

It gets the name star tortoise because of its pretty shell markings that look sort of like stars. It can grow up to a foot long, or 30 cm, and eats grass, fruit, and other plant material, but will also eat mushrooms, insects, and snails. It has a steeply domed carapace, the proper name for its shell, with big bumps on it. It lives in central Myanmar in south Asia, but by the late 1990s it was almost extinct in the wild. The tortoise was eaten by locals, but mostly it was captured and sold as a pet or as a medicine ingredient even though it’s a tortoise, not a medicine. This was despite the tortoise being a protected species in the country.

Conservationists realized they had to act fast before this lovely tortoise went extinct. In 2004, authorities caught smugglers with 175 of the tortoises, so Myanmar’s conservation group created tortoise breeding facilities within three of the country’s wildlife sanctuaries. They consulted zoo veterinarians and tortoise experts from all over the world to make sure the rescued tortoises were as happy and healthy as possible. The first captive-bred Burmese star tortoise babies had only been hatched the year before, since it’s hard to breed in captivity.

Each sanctuary has guards that protect it from anyone who wants to sneak in and steal the animals to sell, and 150 of the tortoises have little radio trackers attached to their shells so conservationists can keep an eye on exactly where they are. They go out and check on the tagged tortoises every other week.

Since 2004, over 16,000 Burmese star tortoises have hatched in captivity and about a thousand have been returned to the wild. They’d release more into the wild, but the conservationists are worried that poachers would collect them to sell. The country of Myanmar is in a long-running civil war, unfortunately, and that makes it hard for the people living there to concentrate on conservation. Their main goal is just to stay safe. Hopefully things will get better soon for the people of Myanmar, and when they do, the tortoises will be waiting.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 212: The River of Giants

Thanks to Pranav for his suggestion! Let’s find out what the river of giants was and what lived there!

Further reading:

King of the River of Giants

Spinosaurus was a swimming dinosaur and it swam in the River of Giants:

A modern bichir, distant relation to the extinct giants that lived in the River of Giants:

Not actually a pancake crocodile:

A model of Aegisuchus and some modern humans:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

A while back, Pranav suggested we do an episode about the river of giants in the Sahara. I had no idea what that was, but it sounded interesting and I put it on the list. I noticed it recently and looked it up, and oh my gosh. It’s amazing! It’s also from a part of the world where it’s really hot, as a break for those of us in the northern hemisphere who are sick of all this cold weather. I hope everyone affected by the recent winter storms is warm and safe or can get that way soon.

The Sahara is a desert in northern Africa, famous for its harsh climate. Pictures of the Sahara show its huge sand dunes that stretch to the horizon. This wasn’t always the case, though. Only about 5,500 years ago, it was a savanna with at least one lake. Lots of animals lived there and some people too. Before that, around 11,000 years ago, it was full of forests, rivers, lakes, and grasslands. Before that, it was desert again. Before that, it was forests and grasslands again. Before that, desert.

The Sahara goes through periodic changes that last around 20,000 years where it’s sometimes wet, sometimes dry, caused by small differences in the Earth’s tilt which changes the direction of the yearly monsoon rains. When the rains reach the Sahara, it becomes green and welcoming. When it doesn’t, it’s a desert. Don’t worry, we only have 15,000 more years to wait until it’s nice to live in again.

This wet-dry-wet pattern has been repeated for somewhere between 7 and 11 million years, possibly longer. Some 100 million years ago, though, the continents were still in the process of breaking up from the supercontinent Gondwana. Africa and South America were still close together, having only separated around 150 million years ago. The northern part of Africa was only a little north of the equator and still mostly attached to what is now Eurasia.

Near the border of what is now Morocco and Algeria, a huge river flowed through lush countryside. The river was home to giant animals, including some dinosaurs. Their fossilized remains are preserved in a rock formation called the Kem Kem beds, which run for at least 155 miles, or 250 km. A team of paleontologists led by Nizar Ibrahim have been working for years to recover fossils there despite the intense heat. The temperature can reach 125 degrees Fahrenheit there, or 52 Celsius, and it’s remote and difficult to navigate.

For a long time researchers were confused that there were so many fossils of large carnivores associated with the river, more than would be present in an ordinary ecosystem. Now they’ve determined that while it looks like the fossils were deposited at roughly the same time from the same parts of the river, they’re actually from animals that lived sometimes millions of years apart and in much different habitats. Bones or even fossils from one area were sometimes exposed and washed into the river along with newly dead river animals. This gives the impression that the river was swarming with every kind of huge predator, but it was probably not quite so dramatic most of the time.

Then again, there were some really fearsome animals living in and around the river in the late Cretaceous. One of the biggest was spinosaurus, which we talked about in episode 170. Spinosaurus could grow more than 50 feet long, or 15 m, and possibly almost 60 feet long, or 18 m. It’s the only dinosaur known that was aquatic, and we only know it was aquatic because of the fossils found in the Kem Kem beds in the last few years.

Another dinosaur that lived around the river is Deltadromeus, with one incomplete specimen found so far. We don’t have its skull, but we know it had long, slender hind legs that suggests it could run fast. It grew an estimated 26 feet long, or 8 meters, including a really long tail. At the moment, scientists aren’t sure what kind of dinosaur Deltadromeus was and what it was related to. Some paleontologists think it was closely related to a theropod dinosaur called Gualicho, which lived in what is now northern Patagonia in South America. Remember that when these dinosaurs were still alive, the land masses we now call Africa and South America had been right in the middle of a supercontinent for hundreds of millions of years, and only started separating around 150 million years ago. Gualicho looked a lot like a pocket-sized Tyrannosaurus rex. It grew up to 23 feet long, or 7 meters, and had teeny arms. Deltadromeus’s arms are more in proportion to the rest of its body, though.

Some of the biggest dinosaurs found in the Kem Kem beds are the shark-toothed dinosaurs, Carcharodontosaurus, nearly as big as Spinosaurus and probably much heavier. It grew up to 40 or 45 feet long, or 12 to almost 14 meters, and probably stood about 12 feet tall, or 3 ½ meters. It had massive teeth that were flattened with serrations along the edges like steak knives. The teeth were some eight inches long, or 20 cm.

Researchers think that Carcharodontosaurus used it massive teeth to inflict huge wounds on its prey, possibly by ambushing it. The prey would run away but Carcharodontosaurus could take its time catching up, following the blood trail and waiting until its prey was too weak from blood loss to fight back. This is different from other big theropod carnivores like T. rex, which had conical teeth to crush bone.

Dinosaurs weren’t the only big animals that lived in and around the River of Giants, of course. Lots of pterosaur fossils have been found around the river, including one species with an estimated wingspan of as much as 23 feet, or 7 meters. There were turtles large and small, a few lizards, early snakes, frogs and salamanders, and of course fish. Oh my goodness, were there fish.

The river was a large one, possibly similar to the Amazon River. In the rainy season, the Amazon can be 30 miles wide, or 48 km, and even in the dry season it’s still two to six miles wide, or 3 to 9 km. The Amazon is home to enormous fish like the arapaima, which can grow up to 10 feet long, or 3 m. Spinosaurus lived in the River of Giants, and that 50-foot swimming dinosaur was eating something. You better bet there were big fish.

The problem is that most of the fish fossils are incomplete, so paleontologists have to estimate how big the fish was. There were lungfish that might have been six and a half feet long, or 2 meters, a type of freshwater coelacanth that could grow 13 feet long, or 4 meters, and a type of primitive polypterid fish that might have been as big as the modern arapaima. Polypterids are still around today, although they only grow a little over three feet long these days, or 100 cm. It’s a long, thin fish with a pair of lungs as well as gills, and like the lungfish it uses its lungs to breathe air when the water where it lives is low in oxygen. It also has a row of small dorsal fins that make its back look like it has little spikes all the way down. It’s a pretty neat-looking fish, in fact. They’re called bichirs and reedfish and still live in parts of Africa, including the Nile River.

There were even sharks in the river of giants, including a type of mackerel shark although we don’t know how big it grew since all we have of it are some teeth. Another was a type of hybodont shark with no modern descendants, although again, we don’t know how big it was.

The biggest fish that lived in the River of Giants, at least that we know of so far, is a type of ray that looked like a sawfish. It’s called Onchopristis numidus and it could probably grow over 26 feet long, or 8 meters. Its snout, or rostrum, was elongated and spiked on both sides with sharp denticles. It was probably also packed with electroreceptors that allowed it to detect prey even in murky water. When it sensed prey, it would whip its head back and forth, hacking the animal to death with the sharp denticles and possibly even cutting it into pieces. Modern sawfish hunt this way, and although Onchopristis isn’t very closely related to sawfish, it looked so similar due to convergent evolution that it probably had very similar habits.

The modern sawfish mostly swallows its prey whole after injuring or killing it with its rostrum, although it will sometimes eat surprisingly large fish for its size, up to a quarter of its own length. A 26-foot long Onchopristis could probably eat fish over five feet long, or 1.5 meters. It wouldn’t have attacked animals much larger than that, though. It wasn’t eating fully grown Spinosauruses, let’s put it that way, although it might have eaten a baby spinosaurus from time to time. Spinosaurus might have eaten Onchopristis, though, although it would have to be pretty fast to avoid getting injured.

But there was one other type of animal in the River of Giants that could have tangled with a fully grown spinosaurus and come out on top. The river was full of various types of crocodylomorphs, some small, some large, some lightly built, some robust. Kemkemia, for instance, might have grown up to 16 feet long, or 5 meters, but it was lightly built. Laganosuchus might have grown 20 feet long, or 6 meters, but while it was robust, it wasn’t very strong or fast. It’s sometimes called the pancake crocodile because its jaws were long, wide, and flattened like long pancakes. Unlike most pancakes, though, its jaws were lined with lots and lots of small teeth that fit together so closely that when it closed its mouth, the teeth formed a cage that not even the tiniest fish could escape. Researchers think it lay on the bottom of the river with its jaws open, and when a fish swam too close, it snapped it jaws closed and gulped down the fish. But obviously, the pancake crocodile did not worry spinosaurus in the least.

Aegisuchus, on the other hand, was simply enormous. We don’t know exactly how big it is and estimates vary widely, but it probably grew nearly 50 feet long, or 15 meters. It might have been much longer, possibly up to 72 feet long, or 22 meters. It’s sometimes called the shield crocodile because of the shape of its skull.

We don’t have a complete specimen of the shield crocodile, just part of one skull, but that skull is weird. It has a circular raised portion called a boss made of rough bone, and the bone around it shows channels for a number of blood vessels. This is unique among all the crocodilians known, living and extinct, and researchers aren’t sure what it means. One suggestion is that the boss was covered with a sheath that was brightly colored during the mating season, or maybe its shape alone attracted a mate. Modern crocodilians raise their heads up out of the water during mating displays.

The shield crocodile had a flattened head other than this boss, and its eyes may have pointed upward instead of forward. If so, it might have rested on the bottom of the river, looking upward to spot anything that passed overhead. Then again, it might have floated just under the surface of the water near shore, looking up to spot any dinosaurs or other land animals that came down to drink. Watch out, dinosaur! There’s a crocodilian!

Could the shield crocodile really have taken down a fully grown spinosaurus, though? If it was built like modern crocodiles, yes. Spinosaurus was a dinosaur, and dinosaurs had to breathe air. If the shield crocodile hunted like modern crocs, it was some form of ambush predator that could kill large animals by drowning them. You’ve probably seen nature shows where a croc bursts up out of the water, grabs a zebra or something by the nose, and drags it into the water, quick as a blink. The croc can hold its breath for up to an hour, while most land animals have to breathe within a few minutes or die. The shield crocodile and spinosaurus also lived at the same time so undoubtedly would have encountered each other.

Then again, there’s a possibility that the shield crocodile wasn’t actually very fearsome, no matter how big it was. It might have been more lightly built with lots of short teeth like the pancake crocodile’s to trap fish in its broad, flattened snout. Until we have more fossils of Aegisuchus, we can only guess.

Fortunately, palaeontologists are still exploring the Kem Kem beds for more fossils from the river of giants. Hopefully one day soon they’ll find more shield crocodile bones and can answer that all-important question of who would win in a fight, a giant crocodile or a giant swimming dinosaur?

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way and get twice-monthly bonus episodes as well as stickers and things.

Thanks for listening!

Episode 210: The Mysterious Lightbulb Lizard

Does the Shreve’s lightbulb lizard really emit light? (Hint: sort of.) Let’s find out!

Further reading:

The Lightbulb Lizard of Benjamin Shreve

Shreve’s lightbulb lizard, looking pretty ordinary really:

A web-footed gecko in moonlight:

A Jamaican gray anole showing off his dewlap:

Show Transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week let’s learn about an interesting reptile with a mystery that’s mostly solved, but still really weird. It’s called Shreve’s lightbulb lizard.

The story of this little lizard starts in 1937, when zoologist Ivan Sanderson was collecting freshwater crabs on a mountaintop in Trinidad. They were probably mountain crabs, also called the manicou crab, which is actually a pretty astonishing animal on its own. It’s a freshwater crab that doesn’t need to migrate to the ocean to release its eggs into the water. Instead, the female carries her eggs in a pouch in her abdomen. The eggs hatch into miniature crabs instead of larvae, and they stay in her pouch until they’re old enough to strike out on their own.

The mountains of Trinidad are made of limestone, which means they’re full of caves, and Sanderson was reportedly catching crabs in an underground pool or stream. He noticed a flash of light in the darkness and naturally went to find what had made it. All he found was a little lizard hiding under a ledge. It looked kind of like a brown skink and was pretty boring, but when the lizard turned its head, Sanderson saw a flash of dotted light down both its sides. When he caught the lizard and examined it while it was sitting in his hand, it flashed its lights again.

Sanderson knew he’d found something extraordinary, because lizards don’t bioluminesce. We still don’t know of any terrestrial vertebrate that emits light. Lots and lots of marine animals do, and some terrestrial invertebrates like lightning bugs and glow-worms, but no terrestrial vertebrates.

Sanderson took the lizard back to his camp, where he and his team observed it in different situations to see if it would light up again. They moved it to warmer areas and colder ones, made loud noises nearby, even tickled it, and they did indeed see it light up a few times. The light came from a row of tiny eyespots along its sides, from its neck to its hips. It had one row of these spots on each side, and each spot looked like a tiny white bead. The greenish-yellow flashes of light seemed to shine through the spots, as Sanderson said, like “the portals on a ship.”

Sanderson sent the lizard to The British Museum in London where another zoologist studied it and discovered that it was actually a known species, but apparently very rare. Only two specimens had ever been caught, one a juvenile and one an adult female. The lizard Sanderson caught was male, and it turns out that only adult males have these little eyespots. Sanderson later caught seven more of the lizards.

Let’s jump forward a bit and get a better idea of what these lizards look like. Shreve’s lightbulb lizard grows around 5 inches long at most, or 13 cm, not counting its long tail. It has short legs, a pointy nose, and broad, flat scales on its back and sides. It’s mostly brown in color. It lives in high elevations in the Caribbean island of Trinidad and Tobago, which is just off the coast of Venezuela in South America. It prefers cool climates, unlike most reptiles, and while it turns out that it’s not actually very rare, it’s also hard to study because it lives in such remote areas, so we don’t know much about it. It may be nocturnal and it may be semi-aquatic. It certainly lives along mountain streams, where it eats insects and other small animals.

Now, we have mentioned Ivan Sanderson a number of times in past episodes, and you may remember me sounding pretty skeptical about some of his cryptozoological claims. But Sanderson was a zoologist with a good reputation as a field scientist, and more importantly, he wasn’t the only one who saw the lizard light up.

The British Museum zoologist, H.W. Parker, who studied the first lizard Sanderson found, was actually the scientist who had originally discovered the lizard a few years before. He was very interested in the little portholes along the male lizard’s sides and studied them carefully. But he couldn’t find anything about them that indicated how they lit up. Each tiny eyespot consisted of a transparent center spot with a ring of black skin around it. The eyespots did not contain glowing bacteria, specialized nerve endings, ducts, reflecting structures, or anything else that he could think of that might cause a flash of light.

Other zoologists examined the so-called lightbulb lizard over the next few decades and none of them saw it emit light either. By 1960 no one believed it was bioluminescent.

I’m taking most of my information from a blog post by Dr Karl Shuker, a zoologist who writes a lot about cryptozoological mysteries. If you want to read his article, there’s a link in the show notes. Shuker was the one who got some modern scientists interested in the lightbulb lizard again, and there’ve been some recent studies. The lizard has been reclassified several times recently and its current name is Oreosaurus shrevei. Oreosaurus is spelled Oreo-saurus and it may be pronounced that way, and while I would like to think that the name comes from the white-appearing center of the eyespot with black pigment around it like an Oreo cookie, the name Oreosaurus is older than the cookie and as far as I can tell it means mountain lizard.

Some experiments conducted in the early 2000s finally figured out just what is going on with the lightbulb lizard. Sanderson was right: he and his colleagues really did see light coming from the eyespots. But it’s reflected light, not light emitted by the lizard itself. The white dots in the middle of the eyespots are reflective at some angles. Not only that, but when the lizard feels threatened, the skin around the white dots becomes even darker, which makes the reflection seem brighter. It’s partly optical illusion, partly just optics.

The big question now is why the lightbulb lizard has these reflective spots at all. The female doesn’t have them. That suggests that the male uses them in some way to attract a mate, but we don’t know.

While I was researching this episode, I kept coming across mentions of other lizards named lightbulb lizards. They’re all related to Shreve’s lightbulb lizard and I suspect the name got popular after Sanderson’s findings, which he published in a book of his nature travels called Caribbean Treasure. As far as I can find, none of the other lightbulb lizards have these reflective eyespots. Many are burrowing reptiles and they all have short legs and look a lot like skinks.

Meanwhile, in glowing lizard news, scientists discovered in 2018 that chameleons glow fluorescent under ultraviolet light. Even their bones are fluorescent. A lizard called the web-footed gecko, which lives in the desert in Namibia, Africa, has translucent markings on its sides and around its eyes. In daylight the markings don’t show, but in moonlight they glow neon green due to special pigment cells called iridophores. Iridophores are found in cephalopods and other marine animals, but they’ve never been seen before in land animals. Male Jamaican gray anoles have a colorful throat decoration called a dewlap that they extend to attract a mate, and the skin is translucent so that when sunlight passes through it, the colors glow brightly.

All these findings are only a few years old, so obviously we’re only just learning about all the different ways that lizards use light to their advantage. I wouldn’t be a bit surprised if a genuinely bioluminescent lizard was discovered eventually. So when you’re outside at night, don’t assume that every little flash of light is a firefly.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 209: Animals Discovered in 2020

Here’s a 2020 retrospective episode that looks at the bright side of the year! Thanks to Page for the suggestion! Let’s learn about some animals discovered in 2020 (mostly).

Further reading:

Watch This Giant, Eerie, String-Like Sea Creature Hunt for Food in the Indian Ocean

Rare Iridescent Snake Discovered in Vietnam

An intrusive killer scorpion points the way to six new species in Sri Lanka

What may be the longest (colony) animal in the world, a newly discovered siphonophore:

New whale(s) just dropped:

A newly discovered pygmy seahorse:

A newly discovered pipefish is extremely red:

So tiny, so newly discovered, Jonah’s mouse lemur:

The Popa langur looks surprised to learn that it’s now considered a new species of monkey:

The newly rediscovered devil eyed frog. I love him:

The newly discovered Lilliputian frog looks big in this picture but is about the size of one of your fingernails:

This newly discovered snake from Vietnam is iridescent and shiny:

A new giant scorpion was discovered in Sri Lanka and now lives in our nightmares:

The Gollum snakehead was technically discovered in 2019 but we’re going to let that slide:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Very recently, Page suggested the topic “animals discovered in 2020.” Since I was already thinking of doing something like this, I went ahead and bumped his suggestion to the top of the list and here we go!

You’d think that with so many people in the world, there wouldn’t be too many more new animals to discover, especially not big ones. But new scientific discoveries happen all the time! Many are for small organisms, of course, like frogs and insects, but there are still unknown large animals out there. In fact, 503 new animals were officially discovered in 2020. Every single one is so amazing that I had a hard time deciding which ones to highlight. In most cases we don’t know much about these new animals since studying an animal in the wild takes time, but finding the animal in the first place is a good start.

Many of the newly discovered species live in the ocean, especially the deep sea. In April of 2020, a deep-sea expedition off the coast of western Australia spotted several dozen animals new to science, including what may be the longest organism ever recorded. It’s a type of siphonophore, which isn’t precisely a single animal the way that, say, a blue whale is. It’s a colony of tiny animals, called zooids, all clones although they perform different functions so the whole colony can thrive. Some zooids help the colony swim, while others have tiny tentacles that grab prey, and others digest the food and disperse the nutrients to the zooids around it. Many siphonophores emit bioluminescent light to attract prey.

Some siphonophores are small but some can grow quite large. The Portuguese man o’ war, which looks like a floating jellyfish, and which we talked about way back in episode 16, is actually a type of siphonophore. Its stinging tentacles can be 100 feet long, or 30 m. Other siphonophores are long, transparent, gelatinous strings that float through the depths of the sea, snagging tiny animals with their tiny tentacles, and that’s the kind this newly discovered siphonophore is.

The new siphonophore was spotted at a depth of about 2,000 feet, or 625 meters, and was floating in a spiral shape. The scientists estimated that the spiral was about 49 feet in diameter, or 15 meters, and that the outer ring alone was probably 154 feet long, or 47 meters. The entire organism might have measured 390 feet long, or almost 119 meters. It’s been placed into the genus Apolemia although it hasn’t been formally described yet.

Another 2020 discovery off the coast of Australia was an entire coral reef a third of a mile tall, or 500 meters, and almost a mile across, or 1.5 km. It’s part of the Great Barrier Reef but isn’t near the other reefs. A scientific team mapping the seafloor in the area discovered the reef and undoubtedly did a lot of celebrating. I mean, it’s not every day that you find an entirely new coral reef. They were able to 3D map the reef for study and take video too. Best of all, it’s a healthy reef with lots of other animal life living around it.

Another big animal discovered in 2020 is one Patreon subscribers already know about, because we started out the year with an episode all about it. It’s a new whale! In 2018 scientists recording audio of animal life around Mexico’s San Benito Islands in the Pacific Ocean heard a whale call they didn’t recognize. They thought it probably belonged to a type of beaked whale, probably a little-known species called Perrin’s beaked whale.

In late 2020 a team went back to the area specifically to look for Perrin’s beaked whales. They did see three beaked whales and got audio, video, and photographs of them, but they weren’t Perrin’s beaked whales. The whale specialists on the expedition didn’t know what these whales were. They don’t match any species of known cetacean and appear to be a species new to science.

And speaking of new species of whale, guess what. Don’t say chicken butt. You can say whale butt, though, because the discovery of another new whale species was just announced. This one’s a 2021 discovery but there’s no way I was going to wait until next year to talk about it. It lives in the Gulf of Mexico and can grow over 41 feet long, or more than 12 meters. It’s a baleen whale, not a beaked whale, and it was hiding in plain sight. It looks a lot like the Bryde’s whale and was long thought to be a subspecies, but new genetic testing shows that it’s much different. It’s been named Rice’s whale, and unfortunately it’s extremely rare. There may only be around 100 individuals alive. It’s mostly threatened by pollution, especially oil spills like the 2010 Deepwater Horizon oil spill, and by collisions with ships. Hopefully now that scientists know more about it, it can be further protected.

Let’s move on from new gigantic animal discoveries to a much, much smaller one. A new pygmy seahorse was discovered off the coast of South Africa in May 2020. It’s brownish-yellow with pinkish and white markings and is only 20 mm long at most. A dive instructor who had seen the fish but didn’t know what it was told researchers about it and they organized a team to look for it. Its closest known relation lives in southeast Asia almost 5,000 miles away, or 8,000 km. Like other seahorses, it lives in shallow water and uses its flexible tail to hang onto underwater plants, but the area where it lives is full of huge waves rolling in from the ocean. It’s called the Sodwana Pygmy Seahorse after the bay where it was discovered, and officially named Hippocampus nalu. “Nalu” means “here it is” in the local Zulu and Xhosa languages, and it also happens to mean “surging surf” in Hawaiian, and it also happens to be the middle name of the dive instructor who spotted the fish, Savannah Nalu Olivier. Sometimes fate just says “this is the right name.”

A new species of pipefish, which is closely related to the seahorse, was also described in 2020, Stigmatopora harastii. It lives off the coast of New South Wales, Australia and can grow up to 5 ½ inches long, or 14 cm. It was first spotted by scuba divers in 2002. These divers know their fish. It lives among a type of red algae and is the same color red for camouflage. It’s surprising how long it took for scientists to discover it, because it’s not exactly hard to confuse with anything else. Except, you know, algae.

Not all newly discovered animals live in the ocean. In August of 2020 researchers discovered a new mouse lemur in Madagascar. We talked about a different type of mouse lemur in episode 135, that one discovered in 1992 and only growing to 3.6 inches long, or 9 cm, not counting its long tail. The newly discovered Jonah’s mouse lemur is only a little bigger than that. Mouse lemurs are the smallest members of the primate family. They’re also super cute but endangered due to habitat loss.

Another primate discovered in 2020 is one that researchers already knew about for more than a hundred years, but no one realized it was its own species, just like Rice’s whale. In 2020, genetic analysis finally determined that the Popa langur is a new species. It’s a beautiful fuzzy gray monkey with bright white markings around its eyes like spectacles. It lives on an extinct volcano in Myanmar and is critically endangered, with only an estimated 250 individuals left in the wild.

A 2020 expedition to the Bolivian Andes in South America led to the discovery of twenty new species of plant and animal, plus a few re-discoveries of animals that were thought to be extinct. The rediscoveries include a species of satyr butterfly not seen for 98 years, and a frog seen only once before, twenty years ago. The frog is called the devil-eyed frog because of its coloring. It’s purplish or brownish black with red eyes and only grows about an inch long, or 29 mm.

Another frog the team found is one of the smallest frogs in the world. It’s been identified as a frog in the genus Noblella and it only grows about ten mm long. As one article I read pointed out, that’s the size of an aspirin. It’s a mottled brown and black and it lives in tunnels it digs in the leaf litter and moss on the forest floor. It’s being referred to as the Lilliputian frog because of its small size.

In the summer of 2019, a team of scientists surveying the karst forests in northern Vietnam spotted an unusual snake. It was so unusual, in fact, that they knew it had to be new to science. It was dark in color but its small scales shone an iridescent purplish, and it was about 18 inches long, or almost 46 cm. It belongs to a genus referred to as odd-scaled snakes, and we don’t know much about them because they’re so hard to find. They mostly burrow underground or under leaf litter on the forest floor. The new species was described in late 2020.

A new species of giant scorpion was discovered in Sri Lanka in 2020. It lives in the forests of Yala National Park and is nocturnal. The female is jet black while the male has reddish-brown legs, and a big female can grow up to 4 inches long, or a little over 10 cm. It’s called the Yala giant scorpion after the park and is the sixth new scorpion species discovered in the park.

One thing I should mention is that all these scientific expeditions to various countries are almost always undertaken by both local scientists and experts from other places. Any finds are studied by the whole group, resulting papers are written with all members contributing, and any specimens collected will usually end up displayed or stored in a local museum or university. The local scientists get to collaborate with colleagues they might never have met before, while the visiting scientists get the opportunity to learn about local animals from the people who know them best, who also happen to know the best places to eat. Everybody wins!

Let’s finish with an astonishing fish that was technically discovered in 2018 and described in 2019, but was further studied in 2020 and found to be even more extraordinary than anyone had guessed. In 2018, after a bad flood, a man living in the village of Oorakam in Kerala, South India, spotted a fish in a rice paddy. He’d never seen a fish like it before and posted a picture of it on social media. A fish expert saw the picture, realized it was something new, and sent a team to Oorakam to retrieve it before it died or something ate it. It turned out to be a new type of snakehead fish.

There are lots of snakehead species that live in rivers and streams throughout parts of Africa and Asia. But this snakehead, which has been named the Gollum snakehead, lives underground. Specifically, it lives in an aquifer. An aquifer is a layer of water that occurs underground naturally. When rain soaks into the ground, some of it is absorbed by plant roots, some seeps out into streams, and some evaporates into the air; but some of it soaks deeper into the ground. It collects in gravel or sand or fractured rocks, or in porous rocks like sandstone. Sometimes an aquifer carves underground streams through rock, creating caves that no human has ever seen or could ever see, since there’s no entrance to the surface large enough for a person to get through. In this case, the heavy rain and floods in Oorakam had washed the fish out of the aquifer and into the rice paddy.

The Gollum snakehead resembles an eel in shape and grows abound four inches long, or 10 cm. Unlike fish adapted for life in caves, though, it has both eyes and pigment, and is a pale reddish-brown in color. This may indicate that it doesn’t necessarily spend all of its life underground. Aquifers frequently connect to springs, streams, and other aboveground waterways, so the Gollum snakehead may spend part of its life aboveground and part below ground.

When it was first described, the researchers placed the fish in its own genus, but further study in 2020 has revealed that the fish is so different from other snakeheads that it doesn’t just need its own genus, it needs its own family. Members of the newly created family are referred to as dragonfish.

Other snakeheads can breathe air with a structure known as a suprabranchial organ, which acts sort of like a lung, located in the head above the gills. Not only does the Gollum snakehead not have this organ, there’s no sign that it ever had the organ. That suggests that other snakeheads developed the organ later and that the Gollum snakehead is a more basal species. It also has a small swim bladder compared to other snakeheads.

Researchers think that the dragonfish family may have separated from other snakehead species as much as 130 million years ago, before the supercontinent of Gondwana began breaking up into smaller landmasses. One of the chunks that separated from Gondwana probably contained the ancestor of the Gollum snakehead, and that chunk eventually collided very slowly with Asia and became what we now call India.

The Gollum snakehead isn’t the only thing that lives in the aquifer, of course. Lots of other species do too, but it’s almost impossible to study them because they live underground with only tiny openings to the surface. The only time we can study the animals that live there is when they’re washed out of the aquifers by heavy rain. It turns out, in fact, that there’s a second species of dragonfish in the aquifer, closely related to the Gollum snakehead, with a single specimen found after rain.

So, next time you’re outside, think about what might be under the ground you’re walking on. You might be walking above an aquifer with strange unknown animals swimming around in it, animals which may never be seen by humans.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, or just want a sticker, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 207: The Dire Wolf!

This week we’re on the cutting edge of science, learning about the brand new genetic study of dire wolves that rearranges everything we know about the dire wolf and other canids! Also, a bonus turtle update.

Further reading:

Dire Wolves Were Not Really Wolves, Genetic Clues Reveal

An artist’s rendition of dire wolves and grey wolves fighting over a bison carcass (art by Mauricio Anton):

The pig-nosed face of the Hoan Kiem turtle, AKA Yangtze giant softshell turtle, AKA Swinhoe’s softshell turtle:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

You may have heard the news this past week about the new study about dire wolves. I thought it would make a great topic for an episode, and we’ll also have a quick update about a rare turtle that’s been in the news lately too.

Dire wolves show up pretty often in movies and TV shows and video games and books, because as far as anyone knew until very recently, the dire wolf was an extra big wolf that lived in North America during the Pleistocene until it went extinct around 13,000 years ago. Researchers assumed it was a close cousin of the modern grey wolf.

Well, in a brand new study published in Nature literally less than a week ago as this episode goes live, we now have results of a genetic study of dire wolf remains. The results give us surprising new information not just about the dire wolf, but about many other canids.

The study started in 2016, when an archaeologist, Angela Perri, who specializes in the history of human and animal interactions, wanted to learn more about the dire wolf. She went around the United States to visit university collections and museums with dire wolf remains, and took the samples she collected to geneticist Kieren Mitchell. Perri, Mitchell, and their team managed to sequence DNA from five dire wolves that lived between 50,000 and 13,000 years ago.

Then the team compared the dire wolf genome to those of other canids, including the grey wolf and coyote, two species of African wolf, two species of jackal, and the dhole, among others. To their surprise, the dire wolf’s closest relation wasn’t the grey wolf. It was the jackals, both from Africa, but even they weren’t very closely related.

It turns out that 5.7 million years ago, the shared ancestor of dire wolves and many other canids lived in Eurasia. At this point sea levels were low enough that the Bering land bridge, also called Beringia, connected the very eastern part of Asia to the very western part of North America. One population of this canid migrated into North America while the rest of the population stayed in Asia. The two populations evolved separately until the North America population developed into what we now call dire wolves. Meanwhile, the Eurasian population developed into many of the modern species we know today, and eventually migrated into North America too.

By the time the gray wolf populated North America, the dire wolf was so distantly related to it that even when their territories overlapped, they avoided each other and didn’t interbreed. We’ve talked about canids in many previous episodes, including how readily they interbreed with each other, so for the dire wolf to remain genetically isolated, it was obviously not closely related at all to other canids at this point.

The dire wolf looked a lot like a grey wolf, but researchers now think that was due more to convergent evolution than to its relationship with wolves. Both lived in the same habitats: plains, grasslands, and forests. The dire wolf was slightly taller on average than the modern grey wolf, which can grow a little over three feet tall at the shoulder, or 97 cm, but it was much heavier and more solidly built. It wouldn’t have been able to run nearly as fast, but it could attack and kill larger animals. Its head was larger in proportion than the grey wolf’s and it had massive teeth that were adapted to crush bigger bones.

The dire wolf lived throughout North America and even migrated into South America and back into east Asia. It preferred open lowlands and its most important prey animal was probably the horse, although it also ate ground sloths, camels, bison, and many others. It probably also scavenged dead animals and probably hunted as a pack.

Researchers think the dire wolf went extinct due to a combination of factors, including increased competition with grey wolves and maybe with humans, climate change, and the extinction of the megaherbivores that made up its diet. It will probably be reclassified into a different genus, Aenocyon, instead of staying in its current genus, Canis.

Before this study, most researchers thought that the ancestor of North American canids evolved in Eurasia, but had already migrated into North America before developing into dire wolves, grey wolves, coyotes, and other canid species. But now the history of canids has changed a lot. From what we now know, pending further study, the dire wolf was the only canid in North America for millions of years. Grey wolves, coyotes, and their relations are relative newcomers. It’s an exciting time for scientists studying ice age megafauna. Hopefully we’ll learn more soon as more studies are conducted into the dire wolf’s history.

Next, let’s look briefly at a type of turtle that’s been in the news lately too. Swinhoe’s softshell turtle is considered the most endangered turtle in the world. In early 2019 there were only two individuals known, a male and a female, but they had never bred despite being kept together in captivity. Then the female died in April of that year. No females meant no eggs, no baby turtles, no more Swinhoe’s softshell turtle. The species would be extinct.

But in October of 2020, researchers found a female Swinhoe’s softshell turtle in the wild! Not only that, they spotted what they think is a male turtle in the same lake, and found evidence of what may possibly be a third turtle nearby.

Swinhoe’s softshell turtle is also known as the Yangtze giant softshell turtle and used to be found in many lakes and rivers in Asia. Unfortunately, people killed it for its meat and dug up its eggs to eat, and pollution and habitat loss also killed off many of the turtles. This is the same turtle we talked about in episode 68, the Hoan Kiem turtle of Vietnam. It’s probably the largest freshwater turtle in the world, and the largest one ever measured weighed 546 lbs, or 247.5 kg. It can grow over three feet long, or 100 cm.

The newly discovered wild turtles are being monitored carefully to make sure they’re healthy, their environment is clean and safe, and to see if the female lays eggs this spring. The female was captured briefly, just long enough to take blood samples and verify that she was healthy. Then they released her back into the lake. Fingers crossed that she hatches some baby turtles soon!

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 192: Ghostly Animals

Let’s start off October with a spooky episode about some ghost animals–real ones, and some ghost stories featuring animals!

Don’t forget to enter our book giveaway! Details here.

Further reading:

Lolo the Ghost Snake

Barn Related Ghost Stories

What big teef you have, ghost bat:

Nom nom little ghost bat got some mealworms (also, clearly this rehabilitation worker has THE BEST JOB EVER):

Ghost snake!

This is where the ghost snake lives. This photo and the one above were both taken by Sara Ruane (find a link to the article and photos in the “further reading” section):

The ghost crab is hard to see against the sand but it can see you:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s finally October, which means it’s monster month on the podcast! Let’s jump right in with an episode about three animals with the word ghost in their name, and some spooky ghost stories that feature animals. (Don’t worry, they won’t be too spooky. I don’t want to scare myself.)

First up is my personal favorite, the ghost bat. That’s, like, twice the Halloween fun in one animal! Not only that, it’s a member of a family of bats called false vampires, and is sometimes called the Australian false vampire bat. I am just, I can’t, this bat is too perfect and I have died.

The ghost bat lives in parts of northern Australia and is actually pretty big for a microbat. Its wingspan is almost 20 inches wide, or 50 cm. Its color is pale gray, sometimes almost white, while babies are darker gray. It has large, long ears and a nose leaf that helps it echolocate, and it’s nocturnal like most microbats. While it doesn’t have a tail, it does have sharp teeth and a strong jaw to help it eat even the bones of small animals.

Most microbats eat insects, but the ghost bat prefers vertebrates like frogs, mice, snakes, lizards, birds, even other species of bat. It hunts by dropping down on its prey, most of which live on the ground. It folds its wings around its prey and bites it in the neck to kill it, which makes it even better as a Halloween bat. I love this bat. It eats almost all of the body of its prey, including fur, bones, teeth, and even small feathers in the case of birds. Sometimes it eats its prey immediately, but sometimes it carries it to a small cave to eat, separate from its roosting area, referred to as a midden since the floor is littered with the remains of past meals. If you’re not familiar with the word midden, it just means a trash heap. Researchers love finding a ghost bat’s midden because they can find out exactly what animals the bat has eaten lately.

Female ghost bats roost in groups during the late spring to have their babies, usually in caves or abandoned mines. A female gives birth to a single baby, and she carries it around until it’s big enough to learn how to fly on its own, in about seven weeks. Once it can fly, it accompanies its mother on hunting trips until it’s fully weaned several months later. A mother bat has two pairs of teats, one pair near her armpits that produces milk for her baby to drink, and one pair near her legs that doesn’t produce milk. The teats near her legs act as little handholds for her baby to help it keep a good grip on her, especially when it’s very young.

The ghost bat is vulnerable to many of the usual concerns, including habitat loss and introduced predators, but it also has an unusual issue with an introduced plant and a type of fencing. The ghost bat doesn’t fly very high most of the time, since it’s usually hunting for small animals that live on the ground or birds roosting in bushes. As a result, its wings frequently get snagged on the spines of a thorny plant called lantana, and on barbed wire fencing. The spines or barbs tear the wings’ delicate patagia, often so badly that the bat can’t fly and starves to death. Since there are only an estimated 8,000 of the bats left in the wild, this is especially bad.

The ghost bat has good hearing, naturally, but it also has good eyesight. It uses a combination of hearing, vision, and echolocation to navigate and find prey. It also makes some sounds within the hearing range of humans. This is what a ghost bat sounds like:

[ghost bat chattering]

That bat sounds adorable and not spooky at all. So let’s bump up the spooky factor with our first ghost story.

This one comes from one of my favorite books, The Telltale Lilac Bush by Ruth Ann Musick, which we talked about in episode 91, about spooky owls. It’s a collection of ghost stories collected by folklorists in West Virginia. This story is called “A Loyal Dog.”

“Many years ago a small boy saw a little dog floating down the river on a log. He swam out, rescued the dog, and took it home with him. After this, the boy and the dog were together at all times. The dog lived for almost twenty years, and when it died, the young man was very sad to see his good friend go.

“Sometime later the young man was walking through a field, when all at once he was pulled down by something behind him. This gave him quite a start, but when he looked around, he saw, just in front of him, a great crack in the ground. Had he not been stopped, he would probably have fallen into it and been killed.

“What saved him, he did not know. There was nothing around that could have knocked him down or that he could have stumbled over. When he examined his clothing, however, there were the marks of a dog’s teeth on his coat, and clinging to the coat some dog hair—the same color as his old dog’s.”

Next let’s talk about the ghost snake, which lives in Madagascar. Not only is it called the ghost snake, it’s a member of a group of nocturnal or crepuscular snakes called cat-eyed snakes. The cat-eyed snakes are relatively small, slender, and have large eyes with slit pupils like cats have.

The ghost snake gets its name because it’s pale gray in color, almost white, with a darker gray pattern, and because it’s elusive and hard to find. Researchers only discovered it in 2014. A team of researchers were hiking through a national park in the pouring rain hoping to find species of snake that had never had their DNA tested. The goal was to collect genetic samples to study later. After 17 miles, or 25 km, of hiking through rugged terrain in the rain, they spotted a pale snake on the path. Fortunately they were able to catch it, and genetic analysis later showed that it was indeed a new species.

We know very little about the ghost snake since it’s so hard to find. It lives in rocky areas, which is probably why it’s pale gray, since the rocks are too. The rocks are uneven pointy limestone formations known locally as tsingy, which translates to “rock you can’t walk on barefoot.” The snake doesn’t have fangs, but it does have toxins in its saliva and a pair of enlarged teeth in the rear of the mouth. We don’t know what it eats yet, but the other cat-eyed snakes in Madagascar are general predators who eat pretty much any small animal they can catch, including frogs and toads, lizards, and rodents. Other cat-eyed snakes also sometimes act like constrictors to help kill prey.

A mysterious pale snake is definitely spooky, but I have a story that’s even spookier. It’s from a 1913 book called Animal Ghosts by Elliott O’Donnell and the story is called “The Phantom Pigs of the Chiltern Hills.”

“A good many years ago there was a story current of an extraordinary haunting by a herd of pigs. The chief authority on the subject was a farmer, who was an eye-witness of the phenomena. I will call him Mr. B.

“Mr. B., as a boy, lived in a small house called the Moat Grange, which was situated in a very lonely spot near four cross-roads, connecting four towns.

“The house, deriving its name from the fact that a moat surrounded it, stood near the meeting point of the four roads, which was the site of a gibbet, the bodies of the criminals being buried in the moat.

“Well, the B——s had not been living long on the farm, before they were awakened one night by hearing the most dreadful noises, partly human and partly animal, seemingly proceeding from a neighbouring spinney, and on going to a long front window overlooking the cross-roads, they saw a number of spotted creatures like pigs, screaming, fighting and tearing up the soil on the site of the criminals’ cemetery.

“The sight was so unexpected and alarming that the B——s were appalled, and Mr. B. was about to strike a light on the tinder-box, when the most diabolical white face was pressed against the outside of the window-pane and stared in at them.

“The children shrieked with terror, and Mrs. B., falling on her knees, began to pray, whereupon the face at the window vanished, and the herd of pigs, ceasing their disturbance, tore frantically down one of the high roads, and disappeared from view.

“Similar phenomena were seen and heard so frequently afterwards, that the B——s eventually had to leave the farm, and subsequent enquiries led to their learning that the place had long borne the reputation of being haunted, the ghosts being supposed to be the earth-bound spirits of the executed criminals.”

Our last ghostly animal is the ghost crab. There are many species of ghost crab that live all over the world, especially on tropical and subtropical beaches, including the one I’m familiar with, the Atlantic ghost crab. It’s typically a fairly small crab. The Atlantic ghost crab only grows around 2 inches across, or 5 cm, not counting its legs, while some species may be twice that size.

Its body is squarish and thick, which gives it a boxy appearance, and it has long, club-shaped eyestalks that can swivel so it can see all around it. One of its claws is always larger than the other. It digs a burrow in the sand or mud to stay in during the day, but at night it comes out and scavenges along the beach to find food. It will eat small animals if it can catch them, including insects and smaller crabs, but it also eats dead animals, rotting plants, and anything else it can find. It’s a fast runner and can zoom around on the beach at up to 10 mph, or 16 km/h.

The ghost crab gets its name from its coloration, just like the other ghost animals in this episode. Most species are white, pale gray, or pale yellow, basically the color of the sand where it lives. But it’s able to change colors to match its surroundings. This change usually takes several weeks because it has to adjust the concentration of pigments in its cells. This is useful since beaches can change color over time too.

The ghost crab is semi-terrestrial. It can’t live underwater without drowning, but it also has to keep its gills wet with seawater or it dies. This is sort of the worst of both worlds if you ask me, but it works for the crab. Generally, damp sand is wet enough to keep its gills wet, and its legs also have tiny hairlike structures that help wick moisture from the sand up to its gills.

A female ghost crab will usually join a male she likes in his burrow to mate. She carries her eggs around under her body, keeping them wet by going into the water frequently. When they’re ready to hatch, she releases them into the surf, where the larvae live until they metamorphose into little bitty young crabs that then live on land.

Surprisingly, the ghost crab makes several different sounds. It can rub the ridges on its claws together, drum on the ground with its claws, and make a weird bubbling sound. Until recently scientists weren’t sure how it made this last sound, but new research reveals that it’s made by a comblike structure in the crab’s digestive system called a gastric mill that helps grind up food. It rubs the comb of the gastric mill against another structure called a medial tooth to produce the sound. The crab uses the noises it makes to intimidate potential predators, including raccoons, and making a sound with its digestive system leaves its claws free to pinch if it needs to.

This is what the ghost crab sounds like:

[ghost crab sound]

We’ll finish up with a final spooky ghost story, or actually several short ones. I found an old but fun thread on a horse forum where people were talking about their haunting experiences in and around barns. I’ve chosen a few to read here, but if you want to go read the whole thread, I’ll link to it in the show notes.

The first comes from someone who calls themself Saidapal:

“My old mare (28 years old) and my young gelding (6 years old) were best of friends since the day he arrived at my farm when he was one. Sadly I had to have the mare put down last year. Every day for the first 2 weeks after she passed the gelding would come out of his stall and go straight to hers just like he had been doing for years to wait for her to join him. Broke my heart and still does when I think about it.

“When she had been gone for about 2-3 months I started seeing shadows out of the corner of my eyes and hearing her joints pop so I knew it was her LOL, and always the gelding would be somewhere in the vicinity. After a day or two I dreamed about her, and in the dream she was young and beautiful again. The very next morning the gelding came out of his stall and went straight to hers just like he used to. It was the last time he ever did that and I haven’t seen her since.

“I swear she had come to say goodbye to both of us.”

The next story is by Darken:

“I’ve had a number of things happen in my barn. I’ve had my collar lifted up and tugged from behind. I’ve had what felt like the nose of a big dog go into the palm of my hand, so much so that I turned around expecting to see my neighbor’s German Shepard there. And the best one was when I was walking out to the barn one night in the dark and saw the ghost of a horse run left to right between me and the barn door. Since I was looking down as I was walking, I just missed seeing its head, but I clearly saw its neck, flying mane, back, croup and flagging tail. I could see nothing below its knees, and it ran about 2 feet off the ground. The edges of it were solid white, but towards the center it was so transparent, I could see the stripes of the barn door thru it.”

And our last story is by Watermark Farm:

“Years ago I boarded at a barn where all the horses spooked badly at a certain corner near the entrance to the arena. It was a real problem and several people had been dumped badly in this corner. A boarder had a pet psychic out to work with her horse. The psychic knew nothing about this spooky spot but said ‘He hates that corner, the one with the dead pig. The dead pig thinks it’s funny to run out and scare the horses.’”

Happy Halloween!

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or just tell a friend. Don’t forget to contact me if you want to enter the book giveaway which is going on through October 31, 2020! Details are on the website.

Thanks for listening!

Episode 181: Updates 3 and a lake monster!

It’s our annual updates and corrections episode, with a fun mystery animal at the end!

Thanks to everyone who contributed, including Bob, Richard J. who is my brother, Richard J. who isn’t my brother, Connor, Simon, Sam, Llewelly, Andrew Gable of the excellent Forgotten Darkness Podcast, and probably many others whose names I didn’t write down!

Further reading:

Northern bald ibis (Akh-bird)

Researchers learn more about teen-age T. rex

A squid fossil offers a rare record of pterosaur feeding behavior

The mysterious, legendary giant squid’s genome is revealed

Why giant squid are still mystifying scientists 150 years after they were discovered (excellent photos but you have to turn off your ad-blocker)

We now know the real range of the extinct Carolina parakeet

Platypus on brink of extinction

Discovery at ‘flower burial’ site could unravel mystery of Neanderthal death rites

A Neanderthal woman from Chagyrskyra Cave

The Iraqi Afa – a Middle Eastern mystery lizard

Further watching/listening:

Richard J. sent me a link to the Axolotl song and it’s EPIC

Bob sent me some more rat songs after I mentioned the song “Ben” in the rats episode, including The Naked Mole Rap and Rats in My Room (from 1957!)

The 2012 video purportedly of the Lagarfljótsormurinn monster

A squid fossil with a pterosaur tooth embedded:

A giant squid (not fossilized):

White-throated magpie-jay:

An updated map of the Carolina parakeet’s range:

A still from the video taken of a supposed Lagarfljót worm in 2012:

An even clearer photo of the Lagarfljót worm:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This is our third annual updates and corrections episode, where I bring us up to date about some topics we’ve covered in the past. We’ll also talk about an interesting mystery animal at the end. There are lots of links in the show notes to articles I used in the episode’s research and to some videos you might find interesting.

While I was putting this episode together, I went through all the emails I received in the last year and discovered a few suggestions that never made it onto the list. I’m getting really backed up on suggestions again, with a bunch that are a year old or more, so the next few months will be all suggestion episodes! If you’re waiting to hear an episode about your suggestion, hopefully I’ll get to it soon.

Anyway, let’s start the updates episode with some corrections. In episode 173 about the forest raven, I mentioned that the northern bald ibis was considered sacred by ancient Egyptians. Simon asked me if that was actually the case or if only the sacred ibis was considered sacred. I mean, it’s right there in the name, sacred ibis.

I did a little digging and it turns out that while the sacred ibis was associated with the god Thoth, along with the baboon, the northern bald ibis was often depicted on temple walls. It was associated with the ankh, which ancient Egyptians considered part of the soul. That’s a really simplistic way to put it, but you’ll have to find an ancient history podcast to really do the subject justice. So the northern bald ibis was important to the ancient Egyptians and sort of considered sacred, but in a different way from the actual sacred ibis.

In episode 146 while I was talking about the archerfish, I said something about how I didn’t fully understand how the archerfish actually spits water so that it forms a bullet-like blob. Bob wrote and kindly explained in a very clear way what goes on: “Basically, the fish spits a stream of water, but squeezes it so that the back end of the stream is moving faster than the front. So it bunches up as it flies and hits the target with one big smack. Beyond that, the water bullet would fall apart as the back part moves through the front part of the stream, but the fish can apparently judge the distance just right.” That is really awesome.

In another correction, Sam told me ages ago that the official pronouns for Sue the T rex are they/them, because that’s what Sue has requested on their Twitter profile. I forgot to mention this last time, sorry.

While we’re talking about Tyrannosaurus rex, researchers have IDed two teenaged T rex specimens found in Montana. Originally paleontologists thought the specimens might be a related species that grew to a much smaller size, Nanotyrannus, but the team studying them have determined that they were juvenile T rexes. To learn how old the specimens were and how fast they grew, they cut extremely thin slices from the leg bones and examined them under high magnification.

The study of fossil bone microstructure is called paleohistology and it’s a new field that’s helped us learn a lot about long-extinct animals like dinosaurs. We know from this study that T rex grew as fast as modern warm-blooded animals like birds and mammals, and we know that the specimens were 13 and 15 years old when they died. T rex didn’t reach its adult size until it was about twenty, and there are definite differences in the morphology of the juvenile specimens compared to an adult. The young T rexes were built for speed and had sharper teeth to cut meat instead of crush through heavy bones the way adults could. This suggests that juvenile T rexes needed to outrun both predators and smaller prey.

In other fossil news, Llewelly sent me a link about a pterosaur tooth caught in a squid fossil. We know pterosaurs ate fish because paleontologists have found fossilized fish bones and scales in the stomach area of pterosaur remains, but now we know they also ate squid. The fossil was discovered in Bavaria in 2012 and is remarkably well preserved, especially considering how few squid fossils we have. One of the things preserved in the fossil is a sharp, slender tooth that matches that of a pterosaur. Researchers think the pterosaur misjudged the squid’s size and swooped down to grab it from the water, but the squid was about a foot long, or 30 cm, and would have been too heavy for the pterosaur to pick up. One of its teeth broke off and remained embedded in the squid’s mantle, where it remains to this day 150 million years later.

And speaking of squid, the giant squid’s genome has been sequenced. Researchers want to see if they can pinpoint how the giant squid became so large compared to most other cephalopods, but so far they haven’t figured this out. They’re also looking at ways that the giant squid differs from other cephalopods and from vertebrates, including humans, to better understand how vertebrates evolved. They have discovered a gene that seems to be unique to cephalopods that helps it produce iridescence.

The Richard J. who is my brother sent me an article about giant squid a while back. There’s a link in the show notes. It has some up-to-date photos from the last few years as well as some of the oldest ones known, and lots of interesting information about the discovery of giant squid.

The Richard J. who is not my brother also followed up after the magpies episode and asked about the magpie jay. He said that the white-throated magpie jay is his favorite bird, and now that I’ve looked at pictures of it, I see why.

There are two species of magpie jay, the black-throated and the white-throated, which are so closely related that they sometimes interbreed where their ranges overlap. They live in parts of Mexico and nearby countries. They look a little like blue jays, with blue feathers on the back and tail, white face and belly, and black markings. Both species also have a floofy crest of curved feathers that looks like something a parrot would wear. A stylish parrot. Like other corvids, it’s omnivorous. It’s also a big bird, almost two feet long including the long tail, or 56 cm.

In other bird news, Connor sent me an article about the range of the Carolina parakeet before it was driven to extinction. Researchers have narrowed down and refined the bird’s range by researching diaries, newspaper reports, and other sightings of the bird well back into the 16th century. It turns out that the two subspecies didn’t overlap much at all, and the ranges of both were much smaller than have been assumed. I put a copy of the map in the show notes, along with a link to the article.

One update about an insect comes from Lynnea, who wrote in after episode 160, about a couple of unusual bee species. Lynnea said that some bees do indeed spin cocoons. I’d go into more detail, but I have an entire episode planned about strange and interesting bees. My goal is to release it in August, so it won’t be long!

In mammal news, the platypus is on the brink of extinction now more than ever. Australia’s drought, which caused the horrible wildfires we talked about in January, is also causing problems for the platypus. The platypus is adapted to hunt underwater, and the drought has reduced the amount of water available in streams and rivers. Not only that, damming of waterways, introduced predators like foxes, fish traps that drown platypuses, and farming practices that destroy platypus burrows are making things even worse. If serious conservation efforts aren’t put into place quickly, it could go extinct sooner than estimated. Conservationists are working to get the platypus put on the endangered species list throughout Australia so it can be saved.

A Neandertal skeleton found in a cave in the foothills of Iraqi Kurdistan appears to be a deliberate burial in an area where many other burials were found in the 1950s. The new skeleton is probably more than 70,000 years old and is an older adult. It was overlooked during the 1950s excavation due to its location deep inside a fissure in the cave. The research team is studying the remains and the area where they were found to learn more about how Neandertals buried their dead. They also hope to recover DNA from the specimen.

Another Neandertal skeleton, this one from a woman who died between 60,000 and 80,000 years ago in what is now Siberia, has had her DNA sequenced and compared to other Neandertal DNA. From the genetic differences found, researchers think the Neandertals of the area lived in small groups of less than 60 individuals each. She was also more closely related to Neandertal remains found in Croatia than other remains found in Siberia, which suggests that the local population was replaced by populations that migrated into the area at some point.

Also, I have discovered that I’ve been pronouncing Denisovan wrong all this time. I know, shocker that I’d ever mispronounce a word.

Now for a lizard and a couple of corrections and additions to the recent Sirrush episode. Last year, Richard J. and I wrote back and forth about a few things regarding one of my older episodes. Specifically he asked for details about two lizards that I mentioned in episode 21. I promised to get back to him about them and then TOTALLY FORGOT. I found the email exchange while researching this episode and feel really bad now. But then I updated the episode 21 show notes with links to information about both of those lizards so now I feel slightly less guilty.

Richard specifically mentioned that the word sirrush, or rather mush-khush-shu, may mean something like “the splendor serpent.” I totally forgot to mention this in the episode even though it’s awesome and I love it.

One of the lizards Richard asked about was the afa lizard, which I talked about briefly in episode 21. Reportedly the lizard once lived in the marshes near the Tigris and Euphrates rivers in what is now Iraq. Richard wanted to know more about that lizard because he wondered if it might be related to the sirrush legend, which is how we got to talking about the sirrush in the first place and which led to the sirrush episode. Well, Richard followed up with some information he had learned from a coworker who speaks Arabic. Afa apparently just means snake in Arabic, although of course there are different words for snake, and the word has different pronunciations in different dialects. He also mentioned that it’s not just the water monitor lizard that’s known to swim; other monitors do too, including the Nile monitor. I chased down the original article I used to research the afa and found it on Karl Shuker’s blog, and Shuker suggests also that the mysterious afa might be a species of monitor lizard, possibly one unknown to science. We can’t know for certain if the afa influenced the sirrush legend, but it’s neat to think about.

Next up, in cryptid news, Andrew Gable of the excellent Forgotten Darkness podcast suggested that some sightings of the White River Monster, which we talked about in episode 153, might have been an alligator—especially the discovery of tracks and crushed plants on the bank of a small island. This isn’t something I’d thought about or seen suggested anywhere, but it definitely makes sense. I highly recommend the Forgotten Darkness podcast and put a link in the show notes if you want to check it out.

And that leads us to a lake monster to finish up the episode. The Lagarfljót [LAH-gar-flote] worm is a monster from Iceland, which is said to live in the lake that gives it its name. The lake is a pretty big one, 16 miles long, or 25 km, and about a mile and a half wide at its widest, or 2.5 km. It’s 367 feet deep at its deepest spot, or 112 m. It’s fed by a river with the same name and by other rivers filled with runoff from glaciers, and the water is murky because it’s full of silt.

Sightings of the monster go back centuries, with the first sighting generally thought to be from 1345. Iceland kept a sort of yearbook of important events for centuries, which is pretty neat, so we have a lot of information about events from the 14th century on. An entry in the year 1345 talks about the sighting of a strange thing in the water. The thing looked like small islands or humps, but each hump was separated by hundreds of feet, or uh let’s say at least 60 meters. The same event was recorded in later years too.

There’s an old folktale about how the monster came to be, and I’m going to quote directly from an English translation of the story that was collected in 1862 and published in 1866. “A woman living on the banks of the Lagarfljót [River] once gave her daughter a gold ring; the girl would fain see herself in possession of more gold than this one ring, and asked her mother how she could turn the ornament to the best account. The other answered, ‘Put it under a heath-worm.’ This the damsel forthwith did, placing both worm and ring in her linen-basket, and keeping them there some days. But when she looked at the worm next, she found him so wonderfully grown and swollen out, that her basket was beginning to split to pieces. This frightened her so much that, catching up the basket, worm and ring, she flung them all into the river. After a long time this worm waxed wondrous large, and began to kill men and beasts that forded the river. Sometimes he stretched his head up on to the bank, and spouted forth a filthy and deadly poison from his mouth. No one knew how to put a stop to this calamity, until at last two Finns were induced to try to slay the snake. They flung themselves into the water, but soon came forth again, declaring that they had here a mighty fiend to deal with, and that neither could they kill the snake nor get the gold, for under the latter was a second monster twice as hard to vanquish as the first. But they contrived, however, to bind the snake with two fetters, one behind his breast-fin, the other at his tail; therefore the monster has no further power to do harm to man or beast; but it sometimes happens that he stretches his curved body above the water, which is always a sign of some coming distress, hunger, or hard times.”

The heath worm is a type of black slug, not a worm or snake at all, and it certainly won’t grow into a dragon no matter how much gold you give it. But obviously there’s something going on in the lake because there have been strange sightings right up to the present day. There’s even a video taken of what surely does look like a slow-moving serpentine creature just under the water’s surface. There’s a link in the show notes if you want to watch the video.

So let’s talk about the video. It was taken in February of 2012 by a farmer who lives in the area. Unlike a lot of monster videos it really does look like there’s something swimming under the water. It looks like a slow-moving snake with a bulbous head, but it’s not clear how big it is. A researcher in Finland analyzed the video frame by frame and determined that although the serpentine figure under the water looks like it’s moving forward, it’s actually not. The appearance of forward movement is an optical illusion, and the researcher suggested there was a fish net or rope caught under the water and coated with ice, which was being moved by the current.

So in a way I guess a Finn finally slayed the monster after all.

But, of course, the video isn’t the only evidence of something in the lake. If those widely spaced humps in the water aren’t a monstrous lake serpent of some kind, what could they be?

One suggestion is that huge bubbles of methane occasionally rise from the lake’s bottom and get trapped under the surface ice in winter. The methane pushes against the ice until it breaks through, and since methane refracts light differently from ordinary air, it’s possible that it could cause an optical illusion from shore that makes it appear as though humps were rising out of the water. This actually fits with stories about the monster, which is supposed to spew poison and make the ground shake. Iceland is volcanically and geologically highly active, so earthquakes that cause poisonous methane to bubble up from below the lake are not uncommon.

Unfortunately, if something huge did once live in the lake, it would have died by now. In the early 2000s, several rivers in the area were dammed to produce hydroelectricity, and two glacial rivers were diverted to run into the lake. This initially made the lake deeper than it used to be, but has also increased how silty the water is. As a result, not as much light can penetrate deep into the water, which means not as many plants can live in the water, which means not as many small animals can survive by eating the plants, which means larger animals like fish don’t have enough small animals to eat. Therefore the ecosystem in the lake is starting to collapse. Some conservationists warn that the lake will silt up entirely within a century at the rate sand and dirt is being carried into it by the diverted rivers. I think the takeaway from this and episode 179 is that diverting rivers to flow into established lakes is probably not a good idea.

At the moment, though, the lake does look beautiful on the surface, so if you get a chance to visit, definitely go and take lots of pictures. You probably won’t see the Lagarfljót worm, but you never know.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 179: Lost and Found Animals

This week let’s learn about some animals that were discovered by science, then not seen again and presumed extinct…until they turned up again, safe and sound!

Further reading:

A nose-horned dragon lizard lost to science for over 100 years has been found

Modigliani’s nose-horned lizard has a nose horn, that’s for sure:

Before the little guy above was rediscovered, we basically just had this painting and an old museum specimen:

The deepwater trout:

The dinosaur ant:

The dinosaur ant statue of Poochera:

The false killer whale bite bite bite bite bite:

Some false killer whales:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week let’s learn about some animals that were discovered by scientists but then lost and assumed extinct, until they were found again many years later. There’s a lot of them and they’re good to think about when we feel down about how many species really are extinct.

We’ll start with a brand new announcement about a reptile called Modigliani’s nose-horned lizard, named after an Italian explorer named Elio Modigliani. He donated a specimen of the lizard to a natural history museum when he got home from exploring Indonesia. That was in 1891, and in 1933 scientists finally described it formally as Harpesaurus modiglianii.

The lizard was especially interesting because it had a horn on its nose that pointed forward and slightly up, and it had spines along its back. It looked like a tiny dragon.

But no one saw another one, not in Indonesia, not anywhere. Researchers knew it had lived where Modigliani said it did because a group of people from Indonesia called the Bataks knew about the lizard. It was part of their mythology and they carved pictures of it. But they didn’t have any, live or dead. Researchers thought it must have gone extinct.

Until 2018. In June 2018, a wildlife biologist named Chairunas Adha Putra was surveying birds in Indonesia, specifically in North Sumatra, when he found a dead lizard. Putra isn’t a lizard expert but he thought it might interest a herpetologist colleague named Thasun Amarasinghe, so he called him. Amarasinghe said oh yeah, that does sound interesting, do you mind sending it to me so I can take a look?

And that’s history, because once he saw it, Amarasinghe knew exactly what the lizard was.

Amarasinghe immediately called Putra, who was still out surveying birds. Could Putra please go back to where he’d found the dead lizard and see if he could find another one, preferably alive? It was really important.

Putra returned obligingly and searched for another lizard. It took him five days, but finally he found one asleep on a branch. He caught it and took pictures, measured it, and observed it before releasing it a few hours later. Hurray for scientists who go that extra mile to help scientists in other fields!

Modigliani’s nose-horned lizard is bright green with a yellow-green belly and spines, plus some mottled orange markings. At least, that’s what it looks like most of the time. It can change colors just like a chameleon. If it’s feeling stressed, it turns a darker gray-green and its spines and belly turn orangey. But it can change its color to match its environment too.

It’s related to a group of lizards called dragon lizards, which includes the bearded dragon that’s often kept as a pet. There are a lot of dragon lizards, and 30 of them have never been seen since they were first described.

Unfortunately, deforestation and habitat loss throughout North Sumatra and other parts of Indonesia threaten many animals, but the Modigliani’s nose-horned lizard was found just outside of a protected area. Hopefully it will stay safely in the protected area while scientists and conservationists study it and work out the best way to keep it safe.

A fish called the deepwater trout, also known as the black kokanee or kunimasu salmon, used to live in a Japanese lake called Lake Tazawa, and that was the only place in the world where it lived. It’s related to the sockeye salmon but it’s much smaller and less flashy. It grows to about a foot long, or 30 cm, and is black and gray in color as an adult, silvery with black markings as a young fish.

In the 1930s, plans to build a hydroelectric power plant on the lake alarmed scientists. The plan was to divert water from the River Tama to work the power station, after which the water would run into the lake. The problem is that the River Tama was acidic with agricultural runoff and water from acidic hot springs in the mountains. The scientists worried that if they didn’t do something to help the fish, soon it would be too late.

In 1935 they moved as many of the fish’s eggs as they could find to other lakes in hopes that the species wouldn’t go extinct. In 1940 the plant was completed, and as expected, the lake’s water became too acidic for the deepwater trout to survive. In fact, it became too acidic for anything to survive. Soon almost everything living in the lake was dead. Within a decade the lake was so acidic that local farmers couldn’t even use it for irrigation, because it just killed any plants it touched. Lake Tazawa is still a mostly dead lake despite several decades of work to lessen its acidity by adding lime to the water.

So, the deepwater trout went extinct in Lake Tazawa along with many other species, and to the scientists’ dismay, they found no sign that the eggs they’d moved to other lakes had survived. The deepwater trout was listed as extinct.

But in 2010, a team of scientists took a closer look at Lake Saiko. It’s one of the lakes where the deepwater trout’s eggs were transferred, and it’s a large, deep lake near Mount Fuji that’s popular with tourists.

The team found nine specimens of deepwater trout. Further study reveals that the population of fish is healthy and numerous enough to survive, as long as it’s left alone. Fortunately, Lake Saiko is inside a national park where the fish can be protected.

Next, let’s look at a species of ant called the dinosaur ant. It was collected by an amateur entomologist named Amy Crocker in 1931 in western Australia. Crocker wasn’t sure what kind of ant she had collected, so she gave the specimens to an entomologist named John Clark. Clark realized the ant was a new species, one that was so different from other ants that he placed it in its own genus.

The dinosaur ant is yellowish in color and workers have a retractable stinger that can inflict painful stings. It has large black eyes that help it navigate at night, since workers are nocturnal. It lives in old-growth woodlands in only a few places in Australia, as far as researchers can tell, and it prefers cool weather. Its colonies are very small, usually less than a hundred ants per nest. Queen ants have vestigial wings while males have fully developed wings, and instead of a nuptial flight that we talked about in episode 175 last month, young queens leave the nest where they’re hatched by just walking away from it instead of flying. Males fly away, and researchers think that once the queens have traveled a certain distance from their birth colony, they release pheromones that attract males. If a queen with an established colony dies, she may be replaced with one of her daughters or the colony may adopt a young queen from outside the colony. Sometimes a queen will go out foraging for her food, instead of being restricted to the nest and fed by workers, as in other ant species.

The dinosaur ant is called that because many of its features are extremely primitive compared to other ants. It most closely resembles the ant genus Prionomyrmex, which went extinct around 29 million years ago. Once researchers realized just how unusual the dinosaur ant was, and how important it might be to our understanding of how ants evolved, they went to collect more specimens to study. But…they couldn’t find any.

For 46 years, entomologists combed western Australia searching for the dinosaur ant, and everyone worried it had gone extinct. It wasn’t until 1977 that a team found it—and not where they expected it to be. Instead of western Australia, the team was searching in South Australia. They found the ant near a tiny town called Poochera, population 34 as of 2019, and the town is now famous among ant enthusiasts who travel there to study the dinosaur ant. There’s a statue of an ant in the town and everything.

The dinosaur ant is now considered to be the most well-studied ant in the world. It’s also still considered critically endangered due to habitat loss and climate change, but it’s easy to keep in captivity and many entomologists do.

Let’s finish with a mammal, and the situation here is a little different. In 1846 a British paleontologist published a book about British fossils, and one of the entries was a description of a dolphin. The description was based on a partially fossilized skull discovered three years before and dated to 126,000 years ago. It was referred to as the false killer whale because its skull resembled that of a modern orca. Scientists thought it was the ancestor of the orca and that it was extinct.

Uh, well, maybe not, because in 1861, a dead but very recently alive one washed up on the coast of Denmark.

The false killer whale is dark gray and grows up to 20 feet long, or 6 meters. It navigates and finds prey using echolocation and mostly eats squid and fish, including sharks. It’s not that closely related to the orca and actually looks more like a pilot whale. It lives in warm and tropical oceans and some research suggests it may migrate to different feeding spots throughout the year. It often travels in large groups of a hundred individuals. That’s as many dolphins as there are ants in dinosaur ant colonies. Part of the year it spends in shallow water, the rest of the year in deeper water, only coming closer to shore to feed.

Researchers are only just starting to learn more than the basics about the false killer whale, and what they’re learning is surprising. It will share food with its family and friends, and will sometimes offer fish to people who are in the water. It sometimes forms mixed-species groups with other species of dolphin, sometimes hybridizes with other closely-related species of dolphin, and will protect other species of dolphin from predators. It’s especially friendly with the bottlenose dolphin. So basically, this is a pretty nice animal to have around if you’re a dolphin, or if you’re a swimming human who would like a free fish. So it’s a good thing that it didn’t go extinct 126,000 years ago.

This is what the false killer whale sounds like:

[false killer whale sounds]

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave a rating and review on Apple Podcasts or wherever you listen to podcasts. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 177: The Mush-khush-shu, AKA the Sirrush

This week we’ll look at an ancient mystery from the Middle East, a mythological dragon-like animal called the Mush-khush-shu, popularly known as the sirrush. Thanks to Richard J. for the suggestion!

The Ishtar Gate (left, a partial reconstruction of the gate in a Berlin museum; right, a painting of the gate as it would have looked):

The sirrush of the Ishtar Gate:

Two depictions of Silesaurus:

The desert monitor, best lizard:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week I have an interesting mystery animal suggested last September by Richard J. Thanks for the suggestion, Richard!

Before we learn about what the sirrush is, though, a quick note, or at least I’ll try to make it quick. I know a lot of people listen to Strange Animals as a fun escape from the everyday world, but right now the everyday world has important stuff going on that I can’t ignore. I want to make it clear to all my listeners that I fully support the Black Lives Matter movement, and I also support LGBTQ rights. Everyone in the whole world deserves respect and equality, but unfortunately right now we’re not there yet. We have to work for equality, all of us together.

If you’re not sure what to do to make the world a better place for everyone, it’s actually really simple. Just treat everyone the same way you want others to treat you and your friends. This sounds easy but when you meet someone who seems different from you it can be hard. If someone has different color skin from you, or speaks with an accent you find hard to understand, or uses an assistive device like a wheelchair, or if you just think someone looks or acts weird, it’s easy to treat that person different and even be rude, although you may not realize that’s what you’re doing at the time. When that happens, it’s always because you’re scared of the person’s differences. You have to consciously remind yourself that you’re being unreasonable and making that person’s day harder when it was probably already pretty hard, especially if everywhere they go, people treat them as someone who doesn’t fit in. Just treat them normally and both you and the other person will feel good at the end of the day.

So that’s that. I hope you think about this later even if right now you’re feeling irritated that I’m taking time out of my silly animal podcast to talk about it. Now, let’s find out what the sirrush is and why it’s such a mystery!

The sirrush is a word from ancient Sumerian, but it’s actually not the right term for this animal. The correct term is mush-khush-shu (mušḫuššu), but sirrush is way easier for me to pronounce. So we’ll go with sirrush, but be aware that that word is due to a mistranslation a hundred years ago and scholars don’t actually use it anymore.

My first introduction to the sirrush was when I was a kid and read the book Exotic Zoology by Willy Ley. Chapter four of that book is titled “The Sirrush of the Ishtar Gate,” and honestly this is about the best title for any chapter I can think of. But while Ley was a brilliant writer and researcher, the book was published in 1959. It’s definitely out of date now.

The sirrush is found throughout ancient Mesopotamian mythology. It usually looks like a snakelike animal with the front legs of a lion and the hind legs of an eagle. It’s sometimes depicted with small wings and a crest of some kind, sometimes horns and sometimes frills or even a little crown. And it goes back a long, long time, appearing in ancient Sumerian art some four thousand years ago.

But let’s back up a little and talk about Mesopotamia and the Ishtar Gate and so forth. If you’re like me, you’ve heard these names but only have a vague idea of what part of the world we’re talking about.

Mesopotamia refers to a region in western Asia and the Middle East, basically between the Euphrates and Tigris rivers. These days the countries of Iraq and Kuwait, parts of Turkey and Syria, and a little sliver of Iran are all within what was once called Mesopotamia. It’s part of what’s sometimes referred to as the Fertile Crescent in the Middle East. The known history of this region goes back five thousand years in written history, but people have lived there much, much longer. Some 50,000 years ago humans migrated from Africa into the area, found it a really nice place to live, and settled there.

Parts of it are marshy but it’s overall a semi-arid climate, with desert to the north. People developed agriculture in the Fertile Crescent, including irrigation, but many cultures specialized in fishing or nomadic grazing of animals they domesticated, including sheep, goats, and camels. As the centuries passed, the cultures of the area became more and more sophisticated, with big cities, elaborate trade routes, and stupendous artwork.

That includes the Ishtar Gate, which was one of the entrances to Babylon, the capital city of the kingdom of Babylonia. The city grew along the banks of the Euphrates River until it was one of the largest cities in the world by about 1770 BCE. Probably a quarter million people lived there in its heyday around the sixth century BCE, but it was a huge and important city for hundreds of years. It’s located in what is now Iraq not far from Baghdad. Babylon is actually the source of the Tower of Babel story in the book of Genesis. In that story, people decided to build a tower high enough to touch heaven, but God didn’t like that and caused the workers to all speak different languages and scattered them across the world. But that story may have grown from earlier stories from Mesopotamia, such as a Sumerian myth where a king asks the god Enki to restore a single language to all the people building an enormous ziggurat so the workers could communicate more easily.

Babylon means “gate of the gods,” and it did have many splendid gates in the massive walls surrounding the city. The ancient Greek historian Herodotus reported there were a hundred of these gates. One of these was the Ishtar Gate, built around 575 BCE. This wasn’t like a garden gate but an imposing and important entry point to the city. For one thing, it was the starting point of a half-mile religious procession held at the new year, which was celebrated at the spring equinox. The gate was dedicated to the goddess Ishtar and was more than 38 feet high, or 12 meters, and faced with glazed bricks. The background bricks were blue, with decorative motifs in orange and white, and there were rows of bas-relief lions, bulls, and sirrushes.

The sirrush was considered a sacred animal of both Babylon and its patron god, Marduk. It’s sometimes called a dragon in English, but from artwork that shows both Marduk and a sirrush, the sirrush was small, maybe the size of a big dog.

The question, of course, is whether the sirrush was based on a real animal or if it was an entirely mythical creature.

As I’ve said before in other episodes, every culture has stories that impart useful information—warnings, history lessons, and so forth. Every culture has monsters and mythological creatures of various kinds. That doesn’t mean those animals were ever thought of as real animals, although they might have taken on aspects of real animals. Think of it this way: You know the story of little red riding hood, right? Where the wolf meets the little girl on her way to Grandma’s house, then runs ahead and swallows the grandma whole and then tricks the little girl into coming close enough to swallow too? That story was never intended to be about a real, actual talking wolf but a warning to children to not talk to strangers. (There are plenty of other things going on in that story, but that’s the main takeaway.)

In other words, it’s quite likely that the sirrush was never meant to be anything but a creature of mythology, a glorious pet for a god. Then again, it’s also possible that it was based on a known creature, sort of like the talking wolf in Little Red Riding Hood is based on the real wolf that can’t talk.

And if that’s the case, what might that animal be?

There have been a lot of suggestions over the years. Willy Ley even suggested it was a modern dinosaur, possibly the mokele-mbembe. That was before the mokele-mbembe stories were widely recognized as hoaxes, as you may remember from way back in episode two. Other people have suggested it was an animal called a Silesaurus, which lived some 230 million years ago in what is now Poland.

Silesaurus grew up to around 7 ½ feet long, or 2.3 meters, and does kind of resemble the Ishtar Gate sirrush. It was slender and probably walked on all fours, with a long tail, long neck, and long legs. It had big eyes and probably mostly ate insects and other arthropods.

Silesaurus had traits found in dinosaurs but it wasn’t actually a dinosaur, although it belonged to a group of animals that were ancestral to dinosaurs. But it probably had one trait that puts it right out of the running to be the model for the sirrush, and that is that paleontologists think it had a beak. This wouldn’t have looked like a bird’s beak but more like a turtle’s, but it would have made the shape of the head very different from the snakelike head of the sirrush. Silesaurus probably pecked like a bird to grab insects. It also had stronger rear legs than front legs, as opposed to the sirrush that was depicted with birdlike rear legs but muscular lion-like front legs.

Silesaurus also lived 230 million years ago, so there’s just simply no way that it survived to modern times, no matter how much it superficially resembles the sirrush.

Ley also claims that the sirrush was the same dragon mentioned in the Bible, in a story called “Bel and the Dragon” in the extended Book of Daniel. Daniel slays the dragon by feeding it cakes made from hair and pitch. But there’s actually no connection between the sirrush and the dragon in this story.

One very specific detail of the sirrush is its forked tongue. This is a snakelike trait, of course, but some lizards also have forked tongues. Could the sirrush of mythology be based on a large lizard? For instance, a type of monitor lizard?

The largest monitor lizard species is the Komodo dragon, which can grow some ten feet long, or more than 3 meters. We talked about it in the Dragons episode a couple of years ago. But there are smaller, more common species that live throughout much of Africa, southern and southeastern Asia, and Australia. And that includes the Middle East.

The desert monitor was once fairly common throughout the Middle East, although it’s threatened now from habitat loss. It can grow up to five feet long, or 1.5 meters, and varies in color from light brown or grey to yellowish. Some have stripes or spots. It eats pretty much anything it can catch, and like many monitor species it’s a good swimmer. It hibernates in a burrow during the winter and also spends the hottest part of the day in its burrow. Like other monitor lizards it has a forked tongue and a flattish head. And it has a long tail, fairly long, strong legs, and a long neck.

If the sirrush was based on a real animal, it’s a good bet that that animal was the desert monitor. That doesn’t mean anyone thought the sirrush was a desert monitor or that we can point to the desert monitor and say, “Ah yes, the fabled sirrush, also called Mušḫuššu.” But people in Mesopotamia would have been familiar with this lizard, so a larger and more exaggerated version of it might have inspired artists and storytellers.

So…Boom! Looks like we solved that mystery. And we learned some history along the way. Definitely check the show notes for pictures of the Ishtar Gate, which has been partially reconstructed from bricks found in archaeological digs. It’s absolutely gorgeous. Also, the desert monitor is totally adorable.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave a rating and review on Apple Podcasts or wherever you listen to podcasts. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!