Episode 050: Tallest Animals

We’re discovering which animals are the tallest this week! This episode includes our first dinosaur!

Sauroposeidon proteles:

Giraffes:

Bop bop bop have at thee!

Paraceratherium (I couldn’t find one that I liked so I drew one, along with a giraffe and ostrich to scale):

Ostrich running:

I SAID DON’T @ ME

A fine day at the ostrich races. I could not make this stuff up if I tried:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re looking at tall animals. Is the giraffe the tallest mammal that’s ever lived? Is the ostrich the tallest bird? And what about tall dinosaurs?

I don’t talk about dinosaurs much in this podcast because there are so many good podcasts devoted specifically to dinosaurs. I recommend I Know Dino. It’s family friendly and goes over the latest dinosaur news without talking down to listeners or dumbing down the information.

Four-footed animals are usually measured at the shoulder, since some animals hold their heads low, like bison, while others hold their heads high, like horses. But we’re talking about tall animals today, and that includes animals with long necks. So the measurements here are all from head to toe, with the head and neck held in its natural standing position.

Let’s start with the real biggie, the tallest dinosaur ever found.

In 1994 a guy named Bobby Cross noticed some fossils weathering out of the ground at the Oklahoma correctional facility where he worked as a dog trainer. As he always did when he found fossils, he called the Oklahoma Museum of Natural History. They sent a team to take a look. The team found four vertebrae, but they were just so big—around four feet long each, or 120 cm—that at first they thought they must be fossilized tree trunks.

Sauroposeidon proteles was probably closely related to Brachiosaurus, but was even bigger and taller. Sauroposeidon stood 60 feet tall, or 18 meters, and its neck alone was 39 feet long, or 12 meters. Its body and legs were relatively short and stocky. We don’t have a complete skeleton, just the four vertebrae found in southeastern Oklahoma, and a few vertebrae from two other individuals found in Montana and Texas. A trail of giant footprints in Texas may be a Sauroposeidon track too. But for sauropods, neck vertebrae are the most valuable fossils because they tell so much about the animal.

Sauroposeidon’s neck bones were massive, but they were lighter than they look due to tiny air sacs in the bones, like those in bird bones. The air sacs in bird bones actually contain air that flows through the lungs, called pneumatic bones, which provides the bird with more oxygen. A CT scan of the Sauroposeidon fossils—at least the portions of the fossils that would actually fit in the CT scanner—revealed that sauroposeidon’s vertebrae were constructed in the same way that bird bones are. We know that pterosaurs and theropods had pneumatic bones, so it’s not too surprising that at least some sauropods did too.

Sauroposeidon lived around 110 million years ago, during the Mesozoic era, specifically during the early to mid Cretaceous. The sea level was much higher then than it is now, so Sauroposeidon lived near the coast. It ate plants, and like many birds, it also swallowed stones to help it digest those plants, called gastroliths. Paleontologists have found lots of sauropod gastroliths associated with fossil animals. Unlike mammals, which chew their food before swallowing, sauropods swallowed it whole and the plant material was broken up in a stomach or gizzard-like structure. That’s why its head is so small relative to its body, and how it could eat enough plants to keep such an enormous body going. It probably ate literally a ton of food every single day.

We know a lot about sauropods, and since sauroposeidon appears to be structurally typical of other sauropods, just really big, it’s a safe bet to assume it was like other sauropods in many ways. It probably nested in groups and laid about two dozen eggs at a time in big nests on the ground. We don’t have any sauroposeidon eggs, but they probably wouldn’t have been all that big, maybe about the size of a football. Babies would have grown rapidly and were full grown in ten to twenty years. Sauroposeidon migrated in herds throughout the year, traveling from nesting grounds to new grazing grounds. While it lived near the ocean, it would have had to be careful about walking on soft ground. An animal that tall and heavy can get mired in mud easily. Paleontologists have actually found fossils of sauropods that died standing up, unable to climb out of a muddy hole after sinking in soft ground.

Giraffes are the tallest living animals today, with the tallest recorded giraffe, a male, measuring 19.3 feet, or 5.88 meters. That’s pretty darn tall, about 1/3 the height of sauroposeidon. Giraffes are related to deer and cattle, and live in the savannahs and forests of Africa, where they eat tree leaves that are much too high off the ground for other animals to reach. Female giraffes and their young make up loose groups, while males form groups of their own. While giraffes can kick hard enough to kill lions, when males fight over females, they use their necks. A male will swing its head at another male, and the two will tussle back and forth bopping necks together. As a result, male giraffes have thicker, stronger necks than females. Males are also usually taller than females.

The giraffe not only has a long neck and long legs, it has a long tongue that it uses to grab leaves that are juuuust too far away. The tongue is about 18 inches long, or 45 cm. A giraffe at Knoxville Zoo licked my hair once. The giraffe’s upper lip is also prehensile, and is hairy as a protection from thorns. Because of all the thorns it encounters, giraffe skin is surprisingly tough. The giraffe has large eyes that give it good vision, and it also has keen hearing and smell. It can close its nostrils to protect them from dust, sand, insects, and—you guessed it—thorns. So many thorns. And giraffe fur contains natural parasite repellents, which also makes giraffes smell funny.

All this is pretty awesome, but we’re not done with giraffe awesomeness. Giraffes have skin-covered horns called ossicones. Females and males both have ossicones, although males also have a median lump at the front of the skull that’s not exactly an ossicone but is sort of like one. Some females also have this median lump. Ossicones are made of cartilage that has ossified, or turned boney, and they’re covered in skin and hair, although since males use their ossicones in necking fights, they tend to rub all the hair off and have bald ossicones.

The only other animal alive today that has ossicones is the okapi, a close relative of the giraffe, but giraffe ancestors once had all kinds of weird ossicones. Xenokeryx amidalae, for instance, which lived about 16 million years ago in what is now Spain, had two ossicones over its eyes, and a third sticking up from the back of its head that was T-shaped. The name amidalae comes from the character Padme Amidala in Star Wars: The Phantom Menace, if you remember that weirdly shaped headdress she wore.

Because giraffes are so tall, they have some physical adaptations that are unique among mammals living today. A giraffe has the same number of neck bones as all other mammals except sloths and manatees, which are weird, but the vertebrae are much longer than in other mammals, almost a foot long, or 28 cm. The giraffe can also tilt its head right back until it’s just about in line with the back of the neck. I’m picturing everyone listening tilting their heads back right now, and hopefully you notice how the back of your neck curves when you look up. Also, please don’t wreck your car because you’re looking up while driving. The giraffe’s circulatory system is really unusual. Its heart is enormous and beats around 150 times per minute. The jugular veins, which are the big veins that carry blood up the neck to the brain, have valves that keep blood from running backwards when a giraffe lowers its head to drink.

Giraffes can walk, and giraffes can run, but they don’t have any other gaits. They can’t trot or canter, for instance. Even humans have more than two gaits, because we can skip. Despite its height, a giraffe can really move. It can run over 30 miles per hour, or about 50 km per hour, and keep it up for several miles. It has cloven hooves. Because a giraffe’s body is so heavy and its legs so long and thin, it has specialized ligament structures in its legs that keep them from collapsing. Horses also have this structure, which also helps the animal sleep while standing.

Oh, and the giraffe doesn’t eat leaves all the time. It spends a lot of the day just standing around chewing its cud.

There used to be a mammal that stood almost as tall as the giraffe at the shoulder. Paraceratherium orgosensis went extinct around 23 million years ago, and it’s not even related to the giraffe. It’s a member of the rhinoceros family. Like sauroposeidon, we don’t have a complete skeleton of paraceratherium, so its size is an estimate based on the proportions of closely related animals whose sizes we do know. It probably stood 18 feet high at the shoulder, or 5.5 meters, and while its neck was probably around 7 feet long, or a little over 2 meters, it probably held it forward like a rhino instead of up like a giraffe, so it didn’t add much to the animal’s overall height.

In episode 32 we learned about the giant moa, a flightless bird that once lived in New Zealand. It was probably the tallest bird that ever lived, with big females 12 feet tall, or 3.6 meters. But the tallest living bird is the ostrich. It also lives in Africa and is famous for being flightless and for being able to run really fast. In fact, it’s not only the tallest bird alive, it’s the fastest. It can run over 40 miles per hour, or about 70 km per hour, and it uses its large wings as rudders and even to help it brake. With its head raised, a big ostrich can be nine feet tall, or 2.8 meters.

There are a lot of differences between ostriches and most other birds. Most birds have four toes, for instance. The ostrich has two, one large toe with a hoof-like nail, and a smaller outer toe with no nail at all. All other living birds secrete urine and feces together, but the ostrich secretes them separately the way mammals do. And while most male birds don’t have a penis, the male ostrich does. And the ostrich has a double kneecap. Not only is that unique to birds, it’s unique to everything. No other animal known, living or extinct, has a double kneecap. Researchers have no idea what it’s for, although one hypothesis is that it allows a running ostrich to extend its legs farther, and another hypothesis is that it might protect tendons in the bird’s leg.

The ostrich eats plants, seeds, and sometimes insects. Like Sauroposeidon and many other dinosaurs and birds, the ostrich swallows small rocks and pebbles to help digest its food in its gizzard. The gizzard contracts, smashing the gastroliths and plants together to help break up the plant material the way mammals would chew it.

Ostrich eggs are the biggest laid by any living bird, about six inches long, or 15 cm. Females lay their eggs in a communal nest.

Ostriches are farmed like big chickens, for their feathers, meat, and skin for leather. Ostriches are also sometimes ridden and raced with special saddles and bridles. But ostriches aren’t easy birds to manage. They can be aggressive, and they can kill a human with one kick.

To wrap things back around to dinosaurs, some researchers think many fast-running dinosaurs used their feathered forelimbs the way ostriches use their wings, to help maneuver and possibly to help keep unfeathered portions of the body warm at night. During the day, when it’s hot, ostriches keep their wings raised so that their unfeathered upper legs can release heat into the atmosphere, but at night they cover their upper legs to retain heat. It’s just another link between birds and their long-distant ancestors, the dinosaurs.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 049: The Brantevik Eel and Friends

This week’s episode is about some interesting eels, including the Brantevik eel.

A European eel:

A leptocephalus, aka an eel larva:

A moray eel. It has those jaws you can see and another set of jaws in its throat:

Episode transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week, we’re going to learn about the Brantevik eel and some other eels, including an eel mystery.

The Brantevik eel is an individual European eel, not a separate species. Its friends knew it as Åle, which I’ve probably misprounounced, so I’m nicknaming it Ollie. So what’s so interesting about Ollie the eel?

First, let’s learn a little bit about the European eel in general to give some background. It’s endangered these days due to overfishing, pollution, and other factors, but it used to be incredibly common. It lives throughout Europe, from the Mediterranean to Iceland, and has been a popular food for centuries.

The European eel hatches in the ocean into a larval stage that looks sort of like a transparent flat tadpole, shaped roughly like a leaf. Over the next six months to three years, the larvae swim through the ocean currents, closer and closer to Europe, feeding on microscopic jellyfish and plankton. Toward the end of this journey, they grow into their next phase, where they resemble eels instead of tadpoles, but are mostly transparent. They’re called glass eels at this point. The glass eels make their way into rivers and other estuaries and slowly migrate upstream. Once a glass eel is in a good environment it metamorphoses again into an elver, which is basically a small eel. As it grows it gains more pigment until it’s called a yellow eel. Over the next decade or two it grows and matures, until it reaches its adult length—anywhere from two to five feet, or 60 cm to 1.5 meters. When it’s fully mature, its belly turns white and its sides silver, which is why it’s called a silver eel at this stage. Silver eels migrate more than 4,000 miles, or 6500 km, back to the Sargasso Sea to spawn, lay eggs, and die.

One interesting thing about the European eel is that during a lot of its life, it has no gender. Its gender is determined only when it grows into a yellow eel, and then it’s mostly determined by environmental factors, not genetics.

Until the late 19th century, everyone thought these different stages—larva, glass eel, elver, yellow eel, and silver eel—were all separate animals. No one knew how or even if eels reproduced. The ancient Greeks thought eels were a type of worm that appeared spontaneously from rotting vegetation. Some people thought eels mated with snakes or some types of fish. By the 1950s the eel’s life cycle was more or less understood, but many researchers thought the European eels never made it to the Sargasso Sea to spawn. It was just too far, so they thought the eels that arrived in Europe were all larvae of the American eel, which is almost identical in appearance to the European eel. The Sargasso Sea is off the coast of the Bahamas, so the American eel doesn’t have nearly as far to travel. These days we know from DNA studies that the American and European eels are different species. The European eel is just a world-class swimmer.

European eels are nocturnal and may live in fresh water, brackish water, or sometimes they remain in the ocean and live in salt water, generally in harbors and shallows. They eat anything they can catch, from fish to crustaceans, from insect larvae to dead things, and on wet nights they’ll sometimes emerge from the water and slide around on land eating worms and slugs. Many populations don’t eat at all during the winter.

Now, back to the Brantevik eel. Brantevik is a tiny fishing village in Sweden. In 1859, an eight-year-old boy named Samuel Nilsson caught an eel and released it into his family’s well to eat insect larvae and other pests. This was a common practice at the time when water wasn’t treated, so the fewer creepy-crawlies in the water, the better.

And there the eel stayed. Ollie got famous over the years, at least in Sweden. Its 100th well anniversary was celebrated in 1959, and children’s books and even movies featured it. But in summer of 2014, Ollie died. Its well is now on the property of Tomas Kjellman, whose family bought the cottage and its well in 1962. Everyone knew about the resident eel, which the family treated as something of a pet. In fact, they discovered it was dead when they opened the well’s cover to show the eel to some visiting friends.

Ollie’s remains were removed from the well and shoved in the family’s freezer, and later sent to be analyzed at the Swedish University of Agricultural Science’s Institute of Freshwater Research. That analysis confirmed that Ollie was over 150 years old.

In the wild, European eels don’t usually live longer than twenty years, and ten years is more likely. But in captivity, where eels don’t spawn, they can live a long time. A female European eel named Putte lived over 85 years in an aquarium at Halsinborgs Museum in Sweden.

What most people don’t know is that Ollie wasn’t alone. Another eel still lives in the well and is doing just fine, but it’s younger, only about 110 years old.

The larvae of European eels are small, only about three inches at the most, or 7.5 cm. Even conger eel larvae are small, only 4 inches long, or 10 cm, and conger eels can grow 10 feet long, or 3 meters. But on January 31, 1930, a Danish research ship caught an eel larva 900 feet deep off the coast of South Africa—and that larva was six feet 1.5 inches long, or 1.85 meters.

Scientists boggled at the thought that this six-foot eel larva might grow into an eel more than 50 feet long, or 15 meters, raising the very real possibility that this unknown eel might be the basis of many sea serpent sightings.

The larva was preserved and has been studied extensively. In 1958, a similar eel larva was caught off New Zealand. It and the 1930 specimen were determined to belong to the same species, which was named Leptocephalus giganteus. Leptocephalus, incidentally, is a catchall genus for all eel larvae, which can be extremely hard to tell apart.

In 1966 two more of the larvae were discovered in the stomach of a western Atlantic lancet fish. They were much smaller than the others, though—only four inches and eleven inches long, or 10 cm and 28 cm. Dr. David G. Smith, an ichthyologist at Miami University, determined that the eel larvae were actually not true eels at all, but larvae of a spiny eel. Deep-sea spiny eels are fish that look like eels but they’re not closely related. And while spiny eels do have a larval form that resembles that of a true eel, they’re much different in one important way. Spiny eel larvae grow larger than the adults, then shrink when they develop into their mature form.

So the six-foot eel larvae, if it had lived, would have eventually developed into a spiny eel no more than six feet long itself at the most, and probably shorter.

More recent research has called Dr. Smith’s findings into question, and many scientists today consider L. giganteus to be the larvae of a short-tailed eel, which is a true eel—but not a type that grows much larger than its larvae. So either way, the adult form would probably not be much longer than a conger eel.

But…we still don’t have an adult. So there’s still a possibility that a very big deep-living marine eel is swimming around in the world’s oceans right now.

The longest known eel is the slender giant moray, which can reach 13 feet in length, or 4 meters. Morays are interesting eels for sure. They live in the ocean, especially around coral reefs, and have two sets of jaws, their regular jaws with lots of hooked teeth, and a second set in the throat that are called pharyngeal jaws, which also have teeth. The moray uses the second set of jaws to help grab and swallow prey that might otherwise wriggle out of its mouth. The moray has a strong bite and doesn’t see very well, although its sense of smell is excellent. This occasionally causes problems for divers who think it would be fun to feed an eel and end up with a finger bitten off. Don’t feed the eels, okay? Not only that, but a moray can’t release its bite even if it’s dead, so if one bites a diver, someone has to pry the eel’s jaws open before the bite can be treated. And as if all that wasn’t warning enough to not feed wild animals, and frankly just stay out of the water entirely, research suggests that some morays are venomous. Oh, and the giant moray sometimes hunts with a fish called the roving coralgrouper, which grows to some four feet long, or 120 cm, which is a rare example of interspecies cooperative hunting.

Some people believe that at least some sightings of the Loch Ness monster can be attributed to eels—European eels, in this case. An eel can’t stick its head out of the water like Nessie is supposed to do, but it does sometimes swim on its side close to the water’s surface, which could result in sightings of a string of many humps undulating through the water. But while eels do live in and around Loch Ness, it’s unlikely that any European eel would grow much larger than around five feet, or 1.5 meters. Still, you never know. Loch Ness is the right habitat for an eel to grow to its maximum size, and while we have learned a lot about eels in general, and the European eel in particular, since Ollie was released into a well in Brantevik, we certainly don’t know everything about them.

One last note about eel larvae. Occasionally on facebook and other social media, well-meaning people will share warnings about a nearly invisible wormlike parasite that can be found in drinking water, with pictures of, you guessed it, eel larvae. Eel larvae are not parasites, are not found in fresh water at all, and even if you did accidentally swallow one, you’d just digest it and get a little protein out of the bargain. So you don’t need to worry about those clickbait warnings, the eels do.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 048: Out of Place Animals

Happy New Year! Let’s learn about a few animals that have shown up in places where they just shouldn’t be. How did they get there, and why? Sometimes we know, sometimes it remains a mystery.

Some of Pablo Escobar’s hippos:

King Julien, the ring-tailed lemur who was discovered almost frozen to death in London:

A little alligator captured in a koi pond. In Maryland. Which is not where gators live:

A monk parakeet eating pizza in Brooklyn, because of course it is:

How did these beavers get into a Devon river? They’re not telling:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Happy new year! Let’s ring in the new year with some out-of-place animals. Sometimes an animal shows up in a place where it just shouldn’t be, and while the animal itself isn’t a mystery, how it got there is. In this episode we’ll chase down the solutions to a few of these mysteries, and ponder a few others we can’t solve.

We’ll start with some hippos that aren’t hanging out in Africa where they belong, but are living in Columbia, South America. In this case, we do know what happened. Back in the 1980s, a guy named Pablo Escobar had a private zoo that contained four hippos, along with other animals. Escobar was not a nice person. He was a drug lord who grew obscenely rich from selling cocaine and killing anyone who didn’t agree with him. In 1993 the police raided his estate and Escobar was killed in a shoot-out. The government took over the estate and turned it into a park, and most of the animals were given to zoos. But the hippos stayed. The estate had a lake that they lived in, and they weren’t hurting anything.

But after a few decades, the four hippos turned into forty. The hippos have expanded their range from the park to neighboring rivers. Sometimes a hippo wanders into a neighboring town or ranch. Hippos can be dangerous—in fact, they’re the most dangerous animal in Africa, killing more people than any other animal. But the locals like the hippos. At this point the government is torn between needing to keep the people and environment safe from these out-of-place animals, and preserving animals that everyone agrees are really awesome. In 2010 the government started a program to castrate the males, which will stop the population from growing, although castrating a wild hippo is not easy so the program is not necessarily going to work.

This is what a hippo sounds like:

[hippo sound]

In December 2011, someone found an unusual animal in London, a ring-tailed lemur. Even if you don’t know what it is, you know what it is. The vets who treated the animal named him King Julien after the character from the movie Madagascar. Lemurs are primates, only found in the island country of Madagascar, so what was one doing in London on a below-freezing day? Poor King Julien almost died of hypothermia and dehydration.

King Julien was very tame, so had probably been someone’s pet. People are allowed to own lemurs in England, but only with a special license. Ring-tailed lemurs are popular exotic pets, and part of the reason they’re endangered in the wild is because they’re frequently captured for sale on the black market. I tried to find out what had happened to King Julien, without luck, but hopefully he recovered fully and now lives in a zoo or wildlife sanctuary where he can be properly cared for and can hang out with other lemurs.

This is what a ring-tailed lemur sounds like:

[ring-tailed lemur sound]

Unfortunately for many animals kept as exotic pets, once the people who buy them realize owning an alligator, for instance, is not as fun as it sounds, the animals are often just dumped outside to fend for themselves. The kind of person who would buy an exotic animal in the first place is probably not the kind of person who bothers to learn how to take care of it.

Back in the mid-20th century, if you took a vacation to Florida and went into a souvenir shop, you could buy a live baby alligator for a few bucks. Baby alligators are cute, like big lizards. But they grow fast, they eat a lot, they make a mess, and they often get sick because they’re not properly taken care of. I like to think I know a fair amount about animals, but I wouldn’t know how to take care of a baby alligator. And if it was 1950 and I couldn’t just look that information up online, or find it in the local library, I’d probably not do a very good job.

Now I know you’ve heard about sewer alligators. The story goes that back in the days when baby alligators were cheap pets, people would bring them home as souvenirs, realize very soon that they didn’t actually want an alligator as a pet, and would flush them down the toilet to get rid of them. Some of the flushed baby alligators survived, and grew up in the safety and relative warmth of the New York City sewers, eating rats. Every so often a maintenance worker would get the shock of shining a flashlight down a sewer tunnel and seeing the reflection of alligator eyes. In the stories, the gators were always enormous.

So did this ever happen? Did alligators ever really live in the sewers of New York or any other city? Alligators have actually been found in sewers, although it’s not known if they were survivors of being flushed or if they were released aboveground and found their way to the nearest water through storm drains. In 2010 a two-foot-long, or 60-centimeter, baby alligator was found in the sewer in New York City. In 1984 a Nile crocodile was captured in the Paris sewers. But a sewer is not a good habitat for any living thing, especially not a reptile. Any alligators found in sewers haven’t been there long—they wouldn’t survive long, and they certainly couldn’t breed in a cold, lightless environment.

But alligators don’t just turn up in sewers. They’re forever being found in people’s ponds, and not in Florida or surrounding areas like you’d think. As just one of many possible examples, in 2015 a guy in Maryland, in the northeastern United States, found a three foot, or .9 meter, alligator in his koi pond. Probably he did not have any koi left by the time police officers caught the gator and relocated it to a local zoo.

This is what an American alligator sounds like:

[alligator sound]

It’s not too unusual to find a bird somewhere outside of its natural range. While migrating birds have amazing skills at navigating long distances, sometimes a bird is blown off course by a storm, or joins a flock of closely related birds that then fly somewhere other than its usual migration route. But sometimes the presence of out-of-place birds aren’t so easy to figure out.

For instance, the Brooklyn parrots. Brooklyn is part of New York City, not a particularly welcoming place for tropical birds. But there’s a population of wild parrots called monk parakeets, or Quaker parrots, that have been living in the city for over 50 years. And no one’s sure where they came from.

The monk parakeet is from Argentina. It’s smallish, around 11 inches long or 29 cm, with a 19 inch wingspan, or 48 cm. It’s a cheerful bright green in color with pale gray forehead and breast, and some blue on the wings. It eats plants of all kinds and builds elaborate multi-family nests called apartments by weaving twigs together.

It’s also been a popular pet for a long time. It learns to mimic speech easily, is intelligent and hardy, and lives 15 to 20 years, or even longer. But because so many feral populations have developed in North America and Australia, some areas no longer allow monk parakeets as pets at all.

The Brooklyn parrots are probably escaped birds from pet stores and especially from shipping crates full of birds imported from Argentina. Thousands of the parrots were sold as pets in the United States during the 60s and 70s. The first report of parrots living in New York City comes from December 1970, when an article about them appeared in the New York Times. Since then, the origin of the parrots has achieved urban legend status, with unsubstantiated stories of heroic releases of captive birds from sinking cargo ships, a mass release of captive birds from an abandoned aviary, and so forth. In the mid-2000s, a poaching ring trapped birds to sell on the black market, but the ring was busted and the birds freed.

Populations of monk parakeets also live in Chicago, Austin TX, Brussels, Belgium, and many other cities. Because their droppings don’t harm statues and other structures the way pigeon droppings do, and studies of urban birds reveal that they aren’t a threat to native species, many cities have stopped trying to exterminate the birds. Their large nests do frequently have to be removed from power transformers.

This is what a monk parakeet sounds like:

[monk parakeet sound]

I always think of beavers as a North American animal, but the Eurasian beaver is native to—you guessed it—Europe and Asia. But like the North American beaver, the Eurasian beaver was almost driven to extinction by humans, who wanted its fur and a substance called castoreum that is still used in perfumes and cigarettes. Castoreum is produced by the beaver to scent mark their territory, and a beaver’s castor sacs is found right next to the anal glands. Another reason to quit smoking!

So by 1900, the Eurasian beaver was almost extinct throughout its range. Only a few small populations remained. In England, Scotland, and Wales it went extinct completely by the 16th century. But after conservation efforts throughout Europe and Asia, beavers have started to be reintroduced into their historic ranges. The first official reintroduction of beavers into Scotland occurred in 2009 and the animals are doing well.

In 2013, people in Devon, England started seeing beavers along the River Otter. The next year they had babies. No one had any idea where the beavers had come from—Devon is too far from Scotland for the Scottish beavers to have migrated there naturally, and anyway the Scottish beavers are closely monitored. If three had gone missing, the researchers in charge of them would know.

It led to a lot of controversy in Devon, to say the least. Fishers and farmers worried that the beavers would mess up the river, carry diseases, and in general cause havoc. And since the beavers hadn’t been officially introduced, no one knew whether these were even the right kind of beaver for England and if they were healthy. But locals liked having beavers around—they are really cute animals, after all. When the government agency Natural England announced it would capture the beavers and put them in a zoo, locals protested so strenuously that the plan was changed. Instead, the beavers were captured, examined by veterinarians to make sure they were Eurasian beavers and disease free, and rereleased. This happened in 2015. The beavers were healthy, they were the right species, and they were returned to the river. Still, no one one knows how they got there.

Beavers are actually good for fish and the local environment. Beaver ponds create winter habitat for many types of fish, and beaver dams don’t stop fish like salmon that migrate upriver to spawn. The presence of beaver dams helps reduce flooding, improves water quality, and creates cover for lots of fish and animals. And while some people believe beavers spread the giardia parasite, which causes a bacterial infection sometimes called beaver fever, giardia is actually mostly spread by humans and our domesticated animals, especially dogs. Giardiasis causes nasty diarrhea and other intestinal distress that can go on for weeks, and it’s why you don’t ever drink water that hasn’t been treated in some way.

The beavers in Devon are doing well and have spread into neighboring waterways. They got in the news again a little over a year ago, in October of 2016, when a rich guy decided he didn’t like them. Sir Benjamin Slade, who has a great name but who is clearly a prime jerk, posted a reward of 1,000 pounds to anyone who would kill the beavers who’d moved onto his estate, because he didn’t like that they were felling some of his trees. Dude, you are rich. Hire somebody to plant more trees for you. Besides, beavers have brought tourists to Devon who hope to catch a glimpse of the animals, which helps the local economy, Mr. Slade, if that IS your real name.

Anyway, this is what a beaver sounds like:

[beaver sound]

There are so many out-of-place animal reports that there’s no way to cover more than a few in one episode, so I’ll definitely revisit the topic. Until then, keep an eye out for anything unusual walking through your back yard.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 047: Strange Horses

It’s the last episode of 2017 and we’re going out in style, learning about some unusual horses!

A Przewalski’s horse PHOTO TAKEN BY ME AT HELSINKI ZOO I cropped out as many poops as I could:

A Heck horse, also sometimes called a tarpan. Photo taken by *squints* Klaus Rudloff in Berlin:

A Moyle breed horse with a bossed forehead:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about an animal I’ve been bonkers crazy about since I was a kid, the horse. But not just regular horses. We’re going to learn about some strange and little-known horses, the best kind of all.

All domestic horses are the same subspecies, Equus ferus caballus, even though the various breeds may look very different. Even mustangs and other populations of wild horses—more properly called feral horses—are the same subspecies. Feral just means a domestic animal that lives like a wild animal, like a stray dog. Only one truly wild horse remains these days, Przewalski’s [pzha-VALski’s] horse, Equus ferus przewalskii. I’ve been pronouncing it Perzwalski’s horse my whole life until today. So let’s start the episode by talking about that one.

Przewalski’s horse is native to the steppes of central Asia, especially Mongolia. It’s currently considered a subspecies of horse, but some researchers think it should be its own species. It went extinct in the wild in 1969. Fortunately, in 1900 15 of the horses had been captured and sold to various zoos. Some of the pairs reproduced, but by 1945, only 13 of the descendants remained. Of those 13, two were hybrids, one of them with a domestic horse, one of them with a tarpan. More about tarpans in a minute. Nine of the 13 were used in a careful breeding program, which was so successful that by 1992, Przewalski’s horse started to be reintroduced to the wild.

I’ve seen Przewalski’s horses, by the way. They had some in the Helsinki Zoo. Check the show notes for a picture taken by me and not swiped by me off the internet.

Przewalski’s horse is stockier than domestic horses, dun in color with a pale belly, with a short, erect mane. The legs are frequently faintly striped. The average horse stands about 13 hands high at the withers, which is the shoulder hump, or four feet four inches, or 132 cm. Its social structure is pretty much the same as the domestic horse’s. It lives in bands consisting of a group of mares and their young, and a stallion that leads the band to grazing areas and water while keeping watch for danger. A solitary stallion may sometimes challenge a stallion with a band of mares, which leads to a fight, which is pretty much the basis of 80% of the horse stories I read as a kid. So exciting.

So what about the tarpan? It was also called the Eurasian wild horse, and it went extinct—for good, unfortunately—in 1918 at the very latest, but probably much earlier. Its scientific name is Equus ferus ferus, and it’s probably the wild horse that gave rise to the modern domesticated horse. But we don’t know for sure, because we don’t know for sure that the tarpans alive in the 18th and 19th centuries were even real tarpans. They might have been hybrids of local domestic horses and Przewalski’s horses, or just feral domestic horses.

We do know that wild horses lived throughout Europe and parts of Asia during the Pleistocene. We have cave paintings 30,000 years old that are so good, scientists can determine a lot about the wild horse’s conformation and coat patterns and colors. We know our ancestors killed and ate horses long before anyone realized how useful it would be to tame such a strong animal and let it do the hard tasks of pulling carts and plows. The horse was domesticated about 6,000 years ago in various places at different times across Eurasia, and it’s possible that different subspecies of horse were domesticated, of which the tarpan was one. But we’re not sure how many subspecies of wild horse there were. We know about Przewalski’s horse since it’s still around, and we know a fair bit about the tarpan because it survived well into modern times. There were probably others, including what might be a type of tarpan that lived in forests.

There’s an interesting etymological fact that might point to the forest tarpan as a distinct type of wild horse. This comes from Willy Ley’s marvelous book, The Lungfish, the Dodo, and the Unicorn, which I’ve read numerous times since I was a kid. A lot of the information is dated since it was first published in the 1940s, but it was cutting edge at the time. Also, the book was already old when I was a kid. I’m not that old. Anyway, Ley writes that there was an unusual Bavarian insult used when someone in southern Germany wanted to call someone else stupid. In other parts of German-speaking Europe, a stupid person is called an Esel, or donkey. But the Bavarian term is Waldesel, which means forest donkey. Ordinary donkeys are called Steinesel, or rock donkey. So some researchers think, or thought 80 years ago, that the Waldesel referred to the forest tarpan. It was supposed to be gray with a black stripe down the spine called an eel stripe, and like other wild horses had a big, donkey-like head.

At some point, when horses were fully domesticated, the wild horses became a pest. They stole domestic mares and ate fodder meant for livestock. So not only were they hunted for meat, they were killed just to get rid of them. By the late 19th century, tarpans were already rare, whether they were really wild horses or hybrids of wild and domestic horses. The last one was killed in the wild in 1879 or the first few days of 1880, the last one in captivity died in the early 20th century—reports vary as to whether it was in 1909, 1917, or 1918, and there are some doubts that these last horses were actually tarpans.

The tarpan looked a lot like Przewalski’s horse: small, stocky, and with a large head, with short mane and tail. They were mostly bay in color—that’s brown with black mane and tail—but dun, black, gray, and other shades were also present. Unlike Przewalski’s horse, the mane fell across the neck like the domestic horse, but was shorter.

So is the tarpan really extinct? If you go online you can find tarpans for sale. What’s up with that?

As early as 1780, people realized the tarpan needed help to survive. That’s when the Polish government established a wildlife park to protect the tarpans living there, but it closed in 1806 and the horses were given to local farmers. A small number of tarpans were kept in zoos. In the 1930s and after, people have tried to breed a horse that closely resembles the tarpan, starting with domestic stock that probably have recent tarpan ancestors. Various breeds of horse have resulted, notably the Heck horse, often called a tarpan. It isn’t really a tarpan, but it sure is beautiful.

There are many horses in folklore, from Pegasus to the kelpie, centaurs to unicorns, but very few actual mystery horses. I looked, believe me. The kelpie, if you’re unfamiliar with the term, is a Scottish water spirit that sometimes appears as a pony with a sopping wet mane. Don’t try to catch it. The second you touch it, it’ll drag you into the water and drown you.

Anyway, I dug around and found not a mystery horse, but something really interesting about horses with horns—not like a unicorn’s horn, but something even stranger. Something real.

Every so often there are reports of a horse with a pair of horns on the forehead. Sometimes they’re described as tiny, although older accounts are more sensational. For instance, an 1837 account from a South American explorer talks about a horse with four-inch long horns like a bull’s, and another with horns three inches long. That would be about 8 cm to 10 cm.

Well, there are a few breeds of horse with what are called bossed foreheads. Basically this means the forehead sometimes has a pair of bony bulges or points above the eyes or near the ears that do look like tiny fur-covered horns like those seen in giraffes, or horn buds where horns could grow. Sometimes a horse will have only one of the bumps, but mostly they grow in pairs. Moyle horses, a North American breed, have the bossed forehead, as do the Datong from China and the Carthusian Andalusians. All three of these breeds are rare. Sometimes the trait appears in other breeds.

Now, these are no three- or four-inch horns. They’re just little bumps maybe a centimeter or so long, or about half an inch. It’s also not clear whether they’re real horns or just calcium deposits of some kind, but since they do seem to be situated consistently in spots where horns could reasonably expect to grow, it’s possible they are due to a genetic glitch that fails to fully suppress an ancient gene sequence that once grew horns. The problem is, as far as we know, there are no horse ancestors that ever grew horns.

While warts and bumps are as common in horses as they are in any mammal, this particular kind of horn-like bump doesn’t seem to appear anywhere else on a horse, even on those with bossed foreheads. A bossed forehead is also supposedly linked with high endurance, but as far as I know there are no real studies about the condition. So if you know someone who’s thinking about going into veterinary medicine, zoology, or a related field, suggest bossed foreheads as a particular topic of study. And then tell them to let me know their findings.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 046: The Other Loch Ness Monsters

There’s more in Loch Ness than one big mystery animal. This week we look at a few smaller mystery animals lurking in the cold depths of the lake.

Further reading:

Here’s Nessie: A Monstrous Compendium from Loch Ness by Karl P.N. Shuker

The goliath frog:

The Wels catfish (also, River Monsters is the best):

An amphipod:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Back in episode 29, I dismissed Nessie, the Loch Ness monster, as probably not a real animal. But this week we’re heading back to Loch Ness to see what other monsters might lurk in its murky depths.

WHAAAAA? Other Loch Ness monsters???

Yes, really! See, ever since the first sightings of Nessie in the 1930s, Loch Ness has been studied and examined so closely that it would be more surprising if no one had ever spotted other mystery animals.

The source of most of the information in this episode is from zoologist Karl Shuker’s book Here’s Nessie! A Monstrous Compendium from Loch Ness. Check the show notes for a link if you’re interested in buying your own copy of the book.

Our first non-Nessie mystery dates from 1934, but it happened, supposedly, sometime in the 1880s. It appeared in the Northern Chronicle, an Inverness newspaper, on January 31, 1934. The article relates that a ship in Loch Ness hit a submerged reef called Johnnie’s Point and sank one night. Luckily no one died. The next day a local diving expert named Duncan Macdonald was hired to determine if the wreck could be raised, but he couldn’t spot the wreck during his dive.

Later that evening, some of the ship’s crew who had heard stories about strange creatures living in Loch Ness asked Macdonald whether he’d seen anything unusual. After some urging, Macdonald finally admitted that he had seen a frog-like creature the size of a good-sized goat sitting on a rock ledge some 30 feet, or 9 meters, underwater. It didn’t bother him so he didn’t bother it.

There are a lot of problems with this account, of course. For one thing, we don’t know who wrote it—the article has no byline. It’s also a secondhand account. In fact, the article ends with this line: quote “The story, exactly as given, was told by Mr Donald Fraser, lock-keeper, Fort Augustus, who often heard the diver (his own grand-uncle) tell it many years ago.” unquote

Plus, of course, frogs don’t grow as big as goats. The biggest frog is the goliath frog, which can grow over a foot, or 32 cm, in length nose to tail, or butt I guess since frogs don’t have tails, which is pretty darn big but not anywhere near as big as a goat. The goliath frog also only lives in fast-moving rivers in a few small parts of Africa, not cold, murky lakes in Scotland, and its tadpoles only feed one one type of plant. In other words, even if someone did release a goliath frog into Loch Ness in the 1880s—which is pretty farfetched—it wouldn’t have survived for long.

The biggest frog that ever lived, as far as we know, lived about 65 million years ago and wasn’t all that much bigger than the goliath frog, only 16 inches long, or 41 cm. It had little horns above its eyes, which gives it its name, devil frog. Its descendants, South American horned frogs, also have little horns but are much smaller.

So what might Mr. Macdonald have seen, assuming he didn’t just make it all up? Some species of catfish can grow really big, but catfish aren’t native to Scotland. It’s always possible that a few Wels catfish, native to parts of Europe, were introduced into Loch Ness as a sport fish but didn’t survive long enough to establish a breeding population in the cold waters. Catfish have wide mouths, although their eyes are small, and might be mistaken for a frog if seen head-on in poor light. Plus, the Wels catfish can grow to 16 feet long, or 5 meters.

Then again, since the article was published during the height of the first Loch Ness monster frenzy, it might all have been fabricated from beginning to end.

A 1972 search for Nessie by the same team that announced that famous underwater photograph of a flipper, which later turned out to be mostly painted on, filmed something in the loch that wasn’t just paint. They were small, pale blobs on the grainy film. The team called them bumblebees from their shape.

Then in July of 1981, a different company searching not for Nessie but for a shipwreck from 1952 filmed some strange white creatures at the bottom of the loch. One of the searchers described them as giant white tadpoles, two or three inches long, or about 5 to 7 cm. Another searcher described them as resembling white mice but moving jerkily.

The search for the wreck lasted three weeks and the white mystery animals were spotted more than once, but not frequently. Afterwards, the company sent video of them to Dr. P Humphrey Greenwood, an ichthyologist at the Natural History Museum in London. Since this was the 1980s, of course, the film was videotape, not digital, but Dr. Greenwood got some of the frames computer enhanced. Probably on a computer that had less actual computing power than my phone. Anyway, the enhancement showed that the animals seemed to have three pairs of limbs. Dr. Greenwood tentatively identified them as bottom-dwelling crustaceans, but not ones native to Loch Ness.

Over the years many people have made suggestions as to what these mystery crustaceans might be. I’m going out on a limb here and declaring that they are not baby Loch Ness monsters. Karl Shuker suggests the white mice footage, at least, might be some kind of amphipod.

We’ve met amphipods before in a couple of episodes, mostly because some species exhibit deep-sea gigantism. Amphipods are shrimp-like crustaceans that live throughout the world in both the ocean and fresh water, and most species are quite small. While they do have more than three pairs of legs—eight pairs, in fact, plus two pairs of antennae—the 1981 videotape wasn’t of high quality and details might easily have been lost. Some of the almost 10,000 known species of amphipod are white or pale in color and grow to the right size to be the ones filmed in Loch Ness. But no amphipods of that description have ever been caught in Loch Ness.

New amphipods are discovered all the time, of course. They’re simply everywhere, and the smallest species are only a millimeter long. But because they’re so common, it’s also easy to transport them from one body of water to another. A rare amphipod discovered in Alpine lakes only a few years ago is already threatened by a different, more common species of amphipod introduced to one of the lakes by accident. So it’s possible that the white mice crustaceans in Loch Ness traveled there on someone’s boat.

That’s certainly the case with another creature found in Loch Ness in 1981, but we know exactly what this one is. It’s a flatworm native to North America, a bit over an inch long, or 3 cm, and only about 5 millimeters wide. It attaches its cocoons to boat bottoms, and in this case it was brought to Loch Ness by equipment used to hunt for Nessie. Spoiler alert: they didn’t find her.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 045: Monotremes

At last, it’s the episode about the platypus, a monotreme! Only two kinds of monotremes remain: the platypus and the echidna. Monotremes are mammals that lay eggs! Not even making that up.

The echidna:

Do not eat:

A platypus and another platypus:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re finally, finally going to look at the platypus and its relations, called monotremes. I’ve been promising a platypus episode for months and now, it is time.

There is so much weird about the platypus, it’s hard to know where to start. So let’s pull back for a second and look at the bigger picture.

Hopefully most of my listeners are familiar with what traits make an animal a mammal instead of a bird or a fish or what have you. At some point in elementary school, you either had to memorize a list of mammalian traits or you will have to memorize one. The list will be something like this: mammals are warm-blooded, grow hair, and feed their babies with milk. Boom, that’s a mammal. There are more differences than that, and some minor exceptions in the growing hair category, but those are the big differences. But even a little tiny baby who doesn’t know anything knows the difference between a bird and, say, a cat or dog. Birds have feathers, mammals never do. Birds lay eggs, mammals never do.

But wait. That’s wrong. Not the feather thing, but the egg-laying. Some mammals lay eggs. Specifically, the monotremes.

There are three main types of mammals. The biggest is the placental mammal group, which includes humans, dogs, cats, mice, bats, horses, whales, giraffes, and so on. A female placental mammal grows her babies inside her body in the uterus, each baby wrapped in a fluid-filled sac called a placenta. During birth, the placenta tears open and the baby is born first, followed by the placenta, which is frequently called the afterbirth. Placental mammals are pretty well developed when they’re born, with considerable variation. Baby deer and horses, for instance, can stand and run within a few hours of birth, while kittens and puppies don’t even have their eyes open yet. But they’re all mostly done cooking, so to speak.

The second type is the marsupial mammal group, which includes possums, kangaroos, koalas, wombats, sugar gliders, and so on. A female marsupial has two uteruses, and while her babies initially grow inside her, they’re born very early. A baby marsupial, called a joey, is just a tiny little pink squidge about the size of a bean that’s not anywhere near done growing, but it’s not completely helpless. It has relatively well developed forelegs so it can crawl up its mother’s fur and find a teat. Some species of marsupial have a pouch around the teats, like possums and kangaroos, but other species don’t. Either way, once the baby finds a teat, it clamps on and stays there for weeks or months while it continues to grow.

The third and rarest type of mammal is the monotreme group, and monotremes lay eggs. But their eggs aren’t like bird eggs. They’re more like reptile eggs, with a soft, leathery shell. The female monotreme keeps her eggs inside her body until it’s almost time for them to hatch. The babies are small squidge beans like marsupial newborns, and I’m delighted to report that they’re called puggles. Echidnas have pouches and after a mother echidna lays her single egg, she tucks it in the pouch. The platypus doesn’t have a pouch, so after she lays her one to three eggs, a mother platypus holds them against her belly with her flat tail to keep them warm.

Monotremes show a number of physical traits that are considered primitive. Some of the traits, like the bones that make up their shoulders and the placement of their legs, are shared with reptiles but not found in most modern mammals. Other traits are shared with birds. The word monotreme means “one opening,” and that opening, called a cloaca, is used for reproductive and excretory systems instead of those systems using separate openings.

It wasn’t until 1824 that scientists figured out that monotreme moms produce milk. They don’t have teats, so the puggles lick the milk up from what are known as milk patches. Before then a lot of scientists argued that monotremes weren’t mammals at all and should either be classified with the reptiles or as their own class, the prototheria.

It’s easy to think, “Oh, that mammal is so primitive, it must not have evolved much since the common ancestor of mammals, birds, and reptiles was alive 315 million years ago,” but of course that’s not the case. It’s just that the monotremes that survived did just fine with the basic structures they evolved a long time ago. There were no evolutionary pressures to develop different shoulder bones or stop laying eggs. Other structures have evolved considerably.

There are only two types of monotremes still living today, the platypus and the echidna, also called the spiny anteater. We only have one species of platypus but four species of echidnas. All monotremes live in Australia and New Guinea these days, but once they were common throughout much of the world. The oldest platypus fossil found is from South America. But around 60 or 70 million years ago, the ancestors of today’s marsupials started to outcompete the monotremes. Researchers think the ancestor of the platypus and echidna survived because it spent a good part of its life in water. Marsupials are not water animals because their joeys will drown.

Let’s talk about the echidna first. The echidna is a land animal, unlike its ancestors, although it swims well and likes water. It looks a lot like a big hedgehog with a long nose. It’s around a foot to 18 inches long, or 30 to 45 cm. Its short fur is brown or black in color with paler spines, and like a hedgehog it will curl up when threatened so that its spines stick out. It has short, powerful legs that it uses to dig burrows and dig up insects, worms, and especially termites, which it slurps up with a sticky tongue. It doesn’t have teeth. It lives in forests and is a solitary animal most of the time.

Now, the platypus. When I was a kid, pretty much all my knowledge of the platypus, and Australia in general, came from the cartoon Dot and the Kangaroo, so I’m upset to report that the scientific name of the platypus has been changed from Ornithorhynchus paradoxis to Ornithorhynchus anatinus. Sometimes people say duck-billed platypus, which isn’t wrong but since there’s only one species of platypus there’s no reason to be that specific, guys. The snout looks like a duck bill but it’s actually very different. It’s soft and rubbery and it’s packed with electroreceptors that allow the platypus to sense the tiny electrical fields generated by muscular contractions in its prey.

When the first platypus skin was brought to Europe in 1798, scientists immediately decided it was a big fakey fake. Obviously some wag had taken a dead beaver and stuck a duck’s bill on it. It wasn’t until 1802 that a scientist was able to dissect a recently killed platypus and realized that not only was it a real animal, not a hoax, but it was really weird. And they didn’t even know until 1884 that it laid eggs.

The platypus is about 20 inches long, or 50 cm, and it has brown fur that’s short and very dense. The platypus spends a lot of time in the water, and its fur traps air close to the skin to help keep the animal warm while not allowing water in. It has a strong flattened tail that acts as a rudder when it swims, along with its hind feet. It actually swims using its big webbed forefeet. It lives in eastern Australia along rivers and streams, and digs a short burrow in the riverbank to sleep in. The female digs a deeper burrow before she has her babies, sometimes over 65 feet long, or 20 meters. At the end she makes a nest out of leaves.

The platypus eats pretty much everything it can catch, from worms and fish to crustaceans and insects. Platypus puggles are born with a few teeth, but lose them as they grow up. Adults don’t have teeth at all, just hardened skin. While it’s underwater, the platypus closes its eyes, nostrils, and ears, and instead navigates and hunts by means of its well-developed electrolocation abilities. The echidna has some electroreceptors but only a fraction of the number the platypus has. Males of both the echidna and the platypus have sharp spurs on their hind legs, but only the platypus can inject venom. Researchers still aren’t sure why.

The platypus is difficult to keep in captivity, so unless you visit Australia you probably won’t get to see one. The echidna is less difficult to keep in captivity but won’t breed in captivity. So if you live in the same parts of the world where the last living monotremes live, consider yourself lucky because you might catch a glimpse of the only mammals that still lay eggs.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on iTunes or whatever platform you listen on. We also have a Patreon if you’d like to support us that way. Rewards include stickers and twice-monthly bonus episodes.

Thanks for listening!

Episode 044: Extinct and Back from the Brink

Our episode this week is about some causes of extinction, but to keep from getting too depressing we’ll look at a lot of animals that were brought back from the brink of extinction by people who saw a problem in time to put it right. We’ll learn a lot about the passenger pigeon this week especially. Thanks to both Maureen and Emily for their suggestions! I didn’t mean to lean so heavily on North American animals in this episode–it just happened that way. I try to mix it up a little more than this ordinarily.

The passenger pigeon (stuffed):

The tiny black robin. It fights crime!

The Tecopa Pupfish is not happy about being extinct:

The West Virginia Northern Flying Squirrel SO CUTE:

This is what the Golden Lion Tamarin thinks about habitat destruction:

A rare Amur tiger dad hanging out with one of his cubs:

The Organization for Bat Conservation

Episode transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about how animals go extinct, with examples of lots of animals who’ve gone extinct and others that have been saved from extinction by human intervention. Both topics were suggestions by Maureen, who also suggested several of the animals I included. I could have kept adding to this episode until it was 24 hours long, but I had to stop somewhere, and now that I’m recording I realize there are aspects of extinction I didn’t address at all.

Extinction means that a population of life forms have all died. That sounds pretty definitive, but it’s also hard to know exactly when it’s happened for any given species. Sometimes you can look online and find the specific day that the very last animal of a species died. In the case of the passenger pigeon, that was September 1, 1914, when a captive bird called Martha was found dead in her cage. Martha had been kept in the Cincinnati Zoo long after the last wild passenger pigeon was shot around 1901. But we don’t know for sure that she was the very last passenger pigeon alive at that point. Passenger pigeons were spotted in the wild for years after Martha died.

The passenger pigeon looks similar to the mourning dove, which is a common and very pretty dove throughout most of North America, but it’s not all that closely related. The passenger pigeon was a swift and elegant flyer but was awkward on the ground. And while mourning doves have a soft, musical call, the passenger pigeon apparently didn’t sound very musical at all. Its calls were mostly loud, harsh clucks that were described as deafening when one of the massive flocks of birds took off in alarm.

So what caused the passenger pigeon to go extinct? As is often the case, it wasn’t just one thing. We’ll come back to the passenger pigeon later, but for now let’s discuss one rather unusual cause that contributed to its extinction.

The passenger pigeon was famous for its numbers. There may have been as many as five billion birds alive at any given time, in flocks that numbered millions of birds each. I’m not exaggerating, either. A single flock could take an entire day to fully pass overhead and literally darkened the sky, there were so many individual birds. With so many birds, it wasn’t that hard for hawks and other hunting birds to catch as many pigeons as they could eat—but there are only so many hawks, and millions upon millions of pigeons. The passenger pigeon also nested in a relatively small area within its eastern North American range. Its nesting colonies were so huge they were called cities. A female laid one or two eggs, which both parents incubated. Sometimes there were so many pigeons in a tree that limbs would break off. By the end of nesting season, pigeon poop underneath roosts could be as deep as a foot, or 30 cm.

And while millions of adult birds were tending millions of eggs and babies, predators gorged themselves on pigeon. Hawks, eagles, owls, and other birds of prey naturally caught lots of pigeons, but other animals moved in to take advantage of the buffet. Bears, foxes, wolves, mountain lions, and smaller animals like possums and raccoons would all eat as much pigeon as they could catch. But there were so many birds that there literally weren’t enough predators to make a dent in the population before the babies could fly and the flocks left the nesting grounds for another year. I mean, birds sometimes just laid their eggs directly on the ground. They were not very hard to catch.

The problem was that once the passenger pigeon’s numbers fell due to other factors, the predators’ yearly glut of pigeon eating started making a difference. The once enormous flocks grew smaller and smaller. And since the passenger pigeon was adapted to thrive in huge colonies, where individuals worked together to gather food and feed babies communally, once the flocks dropped below a certain number, the birds weren’t able to raise their young effectively.

This is depressing, so let’s cleanse the palate with a bird that was saved from certain extinction not too long ago. There are actually a number of species I could have chosen, but I decided on the black robin because it’s tiny, jet black, and has a name that sounds like an alternate-universe DC comic book character.

When I say robin, my North American listeners think of a big thrush-type bird that always looks like it’s frowning, and my European listeners think of a tiny round ball of floof. The black robin is the round ball of floof type, but it’s not from Europe. It’s found only on a few small islands off the coast of New Zealand—really small islands. In 1980, the entire population of black robins lived on Little Mangere Island, which is 279 acres in size, or 113 hectares. Of course, the entire population of black robins in 1980 was five individuals, only one of which was a female. That bird was called Old Blue, and she basically saved her species. A team of conservationists led by Don Merton established a breeding program and today there are more than 250 of the birds.

The black robin was almost driven extinct mainly by introduced predators like cats, rats, and dogs. That’s a common problem, especially in island habitats. Like the dodo, the black robin had never had to deal with mammals that wanted to eat it. It isn’t entirely flightless but it spends most of its time on the ground, digging through brush and dead leaves for insects, and isn’t a very strong flier.

Habitat loss is another huge cause of extinction, and if I wanted to spend all year on this one topic I could. But I won’t, because that would be really grim and not fun at all. One of the factors contributing to the passenger pigeon’s extinction was habitat loss. It mainly ate acorns and small nuts, insects, and seeds found in forests, and when European settlers decided they wanted to turn huge sections of North American woodland into farms and towns, the passenger pigeon soon didn’t have enough forested areas to sustain its massive population. It would have had a hard time as a result even if all other factors had been in its favor.

Habitat loss doesn’t just mean cutting down trees. It can mean polluting a river, bottom dredging in the ocean, diverting water to farmland, and filling in wetlands. It also isn’t always caused by humans. Natural causes like forest fires and volcanoes can lead to habitat loss and extinctions. And many of the dinosaurs, of course, were killed off by a massive meteor impact and its long-term repercussions on climate.

I could choose any of literally thousands of examples of animals that went extinct due to habitat loss, but here’s just one. I mainly chose it because it has a cute name. The Tecopa pupfish was an awesome little fish that lived in California, specifically in the Mojave desert, which is not a place you’d ordinarily expect to find any fish. There are hot springs in the Mojave, though, and the pupfish lived happily in water that was 110 degrees F, or 43 C, or even a little warmer. That’s the temperature of a comfortably warm bath. It ate algae but it also gobbled up mosquito larvae, and it was only about an inch and a half in length, or 4 cm. It didn’t live in the actual hot springs pools, which were too hot, but in a pair of outflows, basically streams that flowed away from the pool down to the Amargosa River.

The problem is, humans really like hot springs. In the 1950s and 60s, people flocked to the Tecopa Hot Springs to soak in the water. Bathhouses were built, the hot springs pools were enlarged, and in 1965, both outflows from the springs were diverted into a single newly dug channel. After that, the water flowed faster. That meant it remained too hot for the pupfish unless the fish moved downstream, and when it moved downstream to where it was comfortable, it had to compete with another subspecies of pupfish, the Amargosa River pupfish. It also had to compete with introduced species of fish.

By 1966, almost no Tecopa pupfish remained. In 1970 it was put on the endangered species list, but by then it was far too late. By 1972 there were no Tecopa pupfish.

Oh my gosh, that’s so depressing. I need another success story. The West Virginia Northern Flying Squirrel is an adorable and fascinating rodent, a subspecies of the more common northern flying squirrel, but it lives only in the highest elevations of the central Appalachian Mountains. During the ice ages, it was isolated from other flying squirrel populations by glaciers and developed separately. It has a broad, flat tail and loose folds of skin that connect its forelegs to its hind legs along its sides. When it jumps from a branch, it holds its legs out to pull the skin folds taut, which allows it to glide through the air.

But it almost died out completely due to industrial logging. By 1985, only ten individuals were found in four different areas of its range. It was listed as a protected species in 1985, and that together with the conservancy of its mountaintop habitats, allowed it to increase to a small but healthy population today.

The West Virginia Northern Flying Squirrel was lucky because its habitat became protected and started to recover from heavy logging, so the flying squirrels were able to stay put and lead their ordinary squirrelly lives. Other species aren’t as fortunate. The Golden Lion Tamarin, for instance, has been snatched from the jaws of certain death but still faces an uphill battle due to habitat destruction.

The golden lion tamarin is a monkey native to the coastal forests of Brazil. It’s a gorgeous monkey with golden-orange fur that grows long around the face so it looks like a lion’s mane. The golden lion tamarin is only around 10 inches long, or 25 cm, not counting its long tail, and it lives in trees where it runs and leaps and climbs a lot like a big golden squirrel.

The problem, of course, is that the Atlantic Forest of Brazil keeps getting cut down. What used to be nearly unbroken forest that stretched for thousands of miles has now shrunk to only around 8% of its original size, and it’s in little bits and pieces widely separated from each other. By 1969, there were only 150 tamarins left.

Fortunately for everyone, especially the tamarins, an aggressive conservation program was well underway by 1984. Zoos throughout the world started breeding golden tamarins for reintroduction into protected wilderness in Brazil. As it happens, while I was still researching this episode, I got an email from a listener that is just so perfect, I have to share it. Emily wrote,

“I used to volunteer at the zoo and I was in charge of making sure the Golden Lion Tamarin monkeys didn’t escape their habitat. There were no fences around it, since they were trying to simulate natural conditions enough so that they could eventually be released back into the jungle. So my job was to walk around the enclosure and shoot them with a water gun. It was set on “very soft.” Just a gentle aquatic nudge to get back in the tree! They were tiny, luxurious creatures and I hated it when my scheduled changed and I had to stop volunteering.”

I love this so much. Thank you, Emily, for sharing the story with me and agreeing to let me use it on the show. I feel like I should pause for a moment so everyone listening can just imagine how awesome it would be to walk around spritzing beautiful little monkeys with water.

Anyway, the population of golden lion tamarins is now over 3,000. And even better, the Brazilian government has made an effort to develop protected wilderness corridors connecting what used to be separate sections of forest. This will help not just the tamarins but lots of other animals too.

Now I feel great. But we’re not done talking about causes of extinction, and unfortunately we’ve reached the worst part: overhunting by humans.

That was the main cause of extinction for the passenger pigeon. People would just shoot up into the air at the seemingly endless flocks of birds. They didn’t even have to aim. Every shot would bring down a rain of dead and injured birds. Almost no one imagined the passenger pigeon could possibly go extinct—there were just too many of them. Even when the flocks were noticeably smaller and the birds’ range had shifted away from the more populated eastern states, professional hunters and trappers continued to follow the flocks and kill as many birds as possible. The dead pigeons were shipped by train to big cities as cheap meat—so cheap that by 1876 it actually cost more to ship a barrel of pigeons on ice than it cost to buy the pigeons when they arrived. By 1878, only one large nesting site remained—and 50,000 pigeons were killed there every single day. No babies survived from that nesting and the surviving adults were killed when they tried to start new nests in another area.

It was senseless. It makes me so mad. But while the passenger pigeon was a great big lesson on how quickly a species can be driven to extinction from an enormous, thriving population, it happens on a smaller scale all the time.

The Caribbean Monk Seal, sometimes called the wolf seal, grew to about 8 feet in length, or 2.5 meters, and had sleek dark gray fur that sometimes looked greenish due to algae growing on it. They were curious, friendly animals that didn’t fear humans, and you can see where this is going. The first European to see the Caribbean monk seal was Christopher Columbus, whose men killed eight seals. The next European to see the Caribbean monk seal was Ponce de Leon, whose men killed 14 seals. Things didn’t get any better from then on.

Seals provided oil from their fat, much like oil made from whale blubber. It could be used to grease machinery or burn in lamps—remember, this was before petroleum products and electricity. Hunting the seals for oil, meat, and skins wasn’t the only problem, though. Conservation back in the 19th century wasn’t all that great. Scientific expeditions usually just killed as many animals as they could find, because that was how they were studied. In only four days, an 1886 expedition specifically made to study seals killed 42 animals and captured a newly born pup that died a week later.

The Caribbean monk seal held on for decades despite the slaughter, but the last one was spotted in 1952 and that was it. Not only were the seals hunted nearly to extinction, the fish and crabs the seals ate were also overhunted. What seals remained had almost nothing to eat and frequently starved to death.

We need a big success story after that one. Let’s talk about the California condor.

The California condor is an enormous bird with a wingspan ten feet wide, or over 3 meters. It’s a scavenger so it looks superficially like a vulture, with a bald head. Its feathers are black with white patches under the wings, and it has a floof of feathers around its neck that looks precisely like it’s wearing a really fancy opera cape. By 1987, the entire world population of the California condor was 27 birds. And those 27 birds were not going to survive long without help. Poaching and habitat loss had almost wiped them out, along with poisoning from lead bullets—the birds would eat the bullets frequently left in the discarded guts after a hunter field dressed a kill.

So all 27 birds were captured and placed into a breeding program, although only 14 birds were able to breed. By 1991 there were enough condors that individuals started to be released into the wild again. Currently there are almost 450 birds total.

Fortunately, in 2019 California hunters will no longer be allowed to use lead bullets at all, and a lot of hunters have already started using lead-free ammunition. This will allow more condors to be released in areas of California where they used to live but were hunted to extinction over a century ago. Lead poisoning is a big problem for all scavengers, including bald eagles.

Our last success story is the Amur tiger, also called the Siberian tiger. It had a lot of names in the past because its range was so large, from Korea to northeastern China, eastern Mongolia, and parts of Russia. It’s a big tiger, as big as the Bengal tiger in the past although the remaining population of Amur tigers is overall smaller than Bengal tigers today. Its head is broad, with a skull similar to a lion’s. Its coat color and markings vary considerably, and its winter coat grows very long and shaggy.

The Amur tiger was already under pressure from hunting and habitat loss when the Russian Civil War broke out in 1917. Tigers were either killed by accident during the fighting, or killed by soldiers on patrol, almost wiping out what animals remained. And after that, tiger hunting wasn’t prohibited until 1947, at which time only a few dozen tigers were left.

Fortunately, it survived. In 2007 the Russian government even set aside a national park just for the Amur tiger. No human activity is allowed in most of the park and tiger numbers are climbing. In 2015, a logging company agreed to dismantle abandoned logging roads so they couldn’t be used by poachers. Bridges were removed, trenches dug, and some areas were simply bulldozed so that vehicles can’t get through. That’s the same year that camera traps got rare photos of an adult Amur tiger male, a female, and three cubs. Since male tigers are usually solitary, that was pretty awesome.

Genetically the Amur tiger is very similar to the extinct Caspian tiger. There’s a possibility that as the Amur tiger’s population grows, it could be reintroduced to parts of Asia where the Caspian tiger once lived.

That brings me to something I meant to mention in last week’s episode. If you listened to the recent Relic: The Lost Treasure podcast episode where I was a guest, you heard me absolutely mangle an explanation of what a subspecies is. So here’s my attempt to clarify what I was trying to say. A subspecies develops when an animal population becomes isolated from the rest of the population for long enough to start evolving in different ways from the parent population. A subspecies can still produce fertile offspring with the parent species and other subspecies of the same species, and may look almost the same, but on a molecular level it’s different enough that if given enough time, it will continue to develop into a different species.

It’s a complicated topic and I said the word species too many times. But hopefully that gives you an idea. Technically humans are a subspecies of Homo sapiens, by the way. Our official scientific name is Homo sapiens sapiens. The extra sapiens indicates that we’re a subspecies and that we’re extra smart, because sapiens means intelligent. All tigers are subspecies of the species Panthera tigris, and the Bengal tiger is called Panthera tigris tigris, because I guess they’re extra tigery.

Anyway, it’s important to remember that while a subspecies may look almost identical to the parent species, it’s developing in different ways due to different evolutionary pressures in its specific habitat. The dodo’s ancestor was a type of pigeon that decided to stay on the island of Mauritius. It probably continued to look like a pigeon for a long time before its evolutionary changes started to show. It’s easy to think that a subspecies going extinct isn’t as important as a full species going extinct, but that’s not the case.

Thinking about extinction can make us feel angry and helpless. But there are lots of things you can do to help, simple things like picking up trash when you’re out hiking, remembering to bring your reusable bags into the grocery store, and using a refillable water bottle instead of buying a new plastic bottle of water. If you have some extra money, there are lots of good conservation organizations that can use a donation. One I try to donate to every year is the Organization for Bat Conservation. I’ll put a link to it in the show notes if you’re interested. If you don’t have extra money but can donate your time to a local organization, that’s just as good. Although you probably won’t be lucky enough to get to spritz monkeys gently with water.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on iTunes or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 043: The Chinese Ink Monkey

This week’s almost late but NOT LATE OKAY episode is about the Chinese ink monkey!

A pygmy tarsier, probably not an ink monkey:

Further reading:

The Search for the Last Undiscovered Animals by Karl P.N. Shuker

Further listening:

Relic: The Lost Treasure Podcast – I’m a guest in episode 15 but all the episodes are great!

Bonus episode since this one is so short (click through and hit play)

Episode transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week’s episode was supposed to be about animals that were saved from extinction by human intervention, but between National Novel Writing Month, the Thanksgiving holidays, and the release of Animal Crossing: Pocket Camp I didn’t get the research completed. So that episode will run in a week or two and we’ll learn about something else this week. Something short, because it’s Sunday and I need to get this episode edited and uploaded so you can listen to it first thing Monday morning.

But first, I want to tell you about an awesome podcast who had me as a guest last week. If you don’t already listen to Relic: The Lost Treasure podcast, I highly recommend it. It’s family friendly and a great take on an aspect of history that doesn’t always get the in-depth research it deserves. In between regular seasons, the host, Maxwell, releases roundtable discussion episodes with different people to cover topics that maybe aren’t exactly about lost treasure, but close. I appeared in episode 15, called “Back from Extinction,” where we discussed animals that were declared extinct but have been rediscovered, although not without controversy. I’ll put a link in the show notes so you can go check that one out. I’d planned my own saved from extinction episode as a sort of follow-up, but time got away from me.

So what are we talking about today? In honor of the end of National Novel Writing Month, which is kicking my butt this year, we’re investigating a mystery animal called the Chinese Ink Monkey.

The story goes that in antiquity, as far back as 2,000 BCE, a tiny primate known as an ink monkey was frequently the pet of scholars and scribes in China. It wasn’t just a cute little pet, it was useful. It was intelligent and could be trained to prepare ink, which back in those days came in blocks and had to be ground into powder and mixed with water to the right consistency. It would turn book pages so the scholar could read hands-free, it would hand pens and other items to the scholar, and it was small enough to sleep in the scholar’s brush pot or desk drawer. Such a useful little creature was highly sought after, but was supposed to have gone extinct at some point centuries ago.

According to a book of Chinese lore called The Dragon Book, published in English in 1938, the ink monkey was only around 5 inches long, or 13 cm. Its sleek fur was black and soft and it had red eyes. It was also supposed to drink any ink remaining at the end of the day as its preferred food.

Since ink in those days was frequently made with precious materials like sandalwood, crushed pearls, musk, rare herbs, and even gold, and those things are not just valuable, they’re not all that nutritious, ink monkeys probably didn’t actually drink ink. But was it even a real animal or just a legend?

In April of 1996, the ink monkey story got media attention when a press release from the official New China News Agency announced its rediscovery in the Wuyi Mountains of Fujian Province. The press release didn’t have many details at all. It basically just reported that the animal was mouse-sized and had been found.

The smallest monkey alive today is the pygmy marmoset from South America, which is about 10 inches long, or almost 26 cm. But there is another animal that looks like a monkey but which is no more than about six inches long, or 15 cm, not counting its tail.

The tarsier is a nocturnal primate with huge round eyes, mouse-like ears, and sucker-like discs at the ends of its toes which it uses to climb trees. Its tail is extremely long, as are its hind legs, which helps it jump through the trees where it spends almost its whole life. While the various species of tarsier are only found on various islands of Southeast Asia today, they were once more widespread. One extinct species did live in China, but not recently. Not even remotely recently. More like 35 to 40 million years ago.

The smallest species is the pygmy tarsier, which is only found in central Sulawesi in Indonesia. It was thought extinct for decades until 2000, when it was rediscovered by local scientists. It’s only about four inches long, or 10.5 cm.

There’s still some controversy as to whether the tarsier is actually a primate. DNA studies haven’t cleared it up yet. But one thing is clear: the tarsier is a heckin adorable little guy. Its eyes are each as big as its brain and most pictures of tarsiers taken in daylight show it squinting as though it’s considering an important philosophical question. The tarsier’s fur is soft, usually beige or orangey in color, and its eyes are golden.

We’ve met the tarsier before briefly in episode eight, the strange recordings episode, because the tarsier communicates in infrasound—sounds too high for humans to hear. It’s carnivorous too, mostly eating insects but it will also eat birds, bats, and reptiles when it can catch them.

But back to the press release that the ink monkey had been rediscovered in China. At least one imminent naturalist, Sir David Attenborough himself, suggested that a species of tarsier might easily have been living in China all along without being known to science. While it is doubtful that a tarsier could learn to prepare ink or turn book pages, it’s also possible that if a famous scholar kept one as a pet, the story of its helpfulness might have been added over the centuries.

The mystery of the ink monkey’s rediscovery was cleared up by zoologist Karl Shuker, who is basically the expert on the ink monkey. Most of my research for this episode comes from his book The Search for the Last Undiscovered Animals. I’ll put a link in the show notes, of course. He discovered that a few weeks before the official press release, a short account of a discovery was published in the London Times on April 5, 1996. That report was about the discovery of a mouse-sized primate in China, sure, but not a living animal. This was a fossil discovery—specifically, a fossil jaw of an tiny proto-monkey that lived around 43 million years ago.

As Shuker concludes, the confusion probably stems from a poor English translation in the press release, leading to reporters thinking a live animal had been discovered.

But that doesn’t mean there wasn’t once a real primate that gave rise to the Chinese ink monkey legend—whether it’s a tarsier or an actual monkey or something else Maybe one day we’ll find out.

That’s it for this episode. I warned you it would be short. To make it up to you, I’ll unlock another Patreon episode for anyone to listen to, this one about mammoths and mastodons. That one probably should have been a regular episode anyway. I’ll put a link directly to the episode in the show notes and you don’t need a Patreon login to listen to it, just click the link and press play.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on iTunes or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 042: Mystery Bears

This week we’re going to learn about bears, including a bunch of m y s t e r y  b e a r s!

Hi! I am a panda bear!

A polar bear:

A spectacled bear:

A baby spectacled bear OMG LOOK AT THAT BABY:

The giant short-faced bear was indeed giant:

Further reading:

Shuker Nature

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

I’m in the mood for a bona fide mystery animal, and I bet you are too. So this week let’s learn about some mystery bears.

There are eight species of bears alive today that we know of: brown, polar, spectacled, sloth, sun, Asian and American black bears, and the giant panda. The other ones you may have heard of, like grizzlies, are subspecies of those eight. For a long time pandas were not considered bears at all, but more closely related to raccoons. These days they’re definitely in the bear box, but they’ve evolved in a completely different direction from other bears for some 19 million years, which is why they’re so different.

Before we get into the mysteries, let’s talk about just how different pandas are from other bears. As you probably know, the panda eats bamboo almost exclusively, unlike all other bears which are either omnivorous or, in the case of the polar bear, carnivorous. To survive on bamboo, the panda has evolved a lot of unusual adaptations. The front paws, for instance, have five toes just like all bears, and also a thumb. The thumb is actually a modified wrist bone that juts out from the base of the paw and helps the panda hold bamboo stalks as it eats the leaves.

Bamboo is not very nutritious. It’s certainly low in protein, especially considering that while the panda eats almost nothing but bamboo, it still has the digestive system of a carnivore. Special microbes in the panda’s intestines help break down the bamboo so the panda can digest it, but it takes a lot of bamboo to provide the energy a panda needs. A panda eats 20 to 30 pounds of bamboo leaves, stems, and shoots every day, or 9-14 kg, which means it also poops a whole lot. Seriously, it poops something like 40 times a day. And it still doesn’t have a lot of energy. It mostly just sits around eating and pooping. But while the panda just chews leaves all the time, it still has bear fangs and it will eat meat and eggs when it can. Researchers think that the panda only became exclusively a bamboo eater about two million years ago.

The panda lives in the mountains of China in only a few places. It used to also live in the lowlands but farming and other development drove it into more remote areas. There are about 50 pandas in captivity these days and somewhere between 1,500 and 3,000 pandas in the wild, with the population finally increasing after laws protecting pandas from poaching started to be enforced.

The people of China knew about the panda for centuries, although they were considered rare and elusive even in the olden days, but it wasn’t until 1869 that anyone from outside of China had a clue that gigantic roly-poly black and white bamboo-eating six-toed bears were real. Seriously, would you believe that? In 1869 a French missionary and naturalist bought a dead panda from some hunters, dissected it to study, and sent the skin to a zoologist friend in Paris.

So it’s possible that there are other mystery bears out there, known to the locals who don’t realize their bears are special, just waiting to be spotted by someone who knows a thing or two about bears.

In 1920 a Swedish scientist named Sten Bergman was shown the pelt of a bear by locals during an expedition to the Kamchatka Peninsula. That’s in the very eastern part of Russia on the Pacific coast and is sparsely populated. It’s mountainous with a cluster of active volcanos and it’s well known for the brown bears that live in the area. The Kamchatka brown bears are among the largest brown bear subspecies in the world, almost the size of the closely related Kodiak brown bear. When it stands on its hind legs it can be almost ten feet tall, or 3 meters. It’s mostly harmless to humans. Mostly. It hardly ever kills people. Just, you know, occasionally. The Kamchatka brown bears have long brown fur, sometimes pale brown but usually a sort of medium brown. They’re certainly not black. But the pelt that Dr. Bergman was shown was jet black and had short fur. But it was definitely a bear pelt, and the pelt was definitely enormous—much larger than a brown bear pelt. Bergman also saw a huge skull supposedly from one of the black bears, and a paw print 15” long and 10” wide, or 38 cm by 25 ½ cm.

Unfortunately none of the giant black bears have turned up since, living or dead. It’s possible that the bear was an unusually large brown bear with anomalous fur. Brown bears do have considerable variability in both the color and length of their fur, so it’s not out of the question that occasionally a brown bear is born that is actually black. It’s also possible that this black bear is actually a different species of bear, but that it’s either gone extinct or is extremely rare and only lives in far remote areas of Siberia these days.

But the Kamchatka Peninsula has another mystery bear for us to ponder. In 1987 a hunter named Rodion Sivolobov bought a giant white bear skin from locals. It looked like a big polar bear pelt, but the locals assured him it was from a very specific, very rare type of local bear.

They called it the irkuiem and described it as large but with a relatively small head, relatively short hind legs, and an unusual method of running. It supposedly runs in a sort of rocking motion, bringing both hind legs up to the forelegs, then throwing the forelegs forward together to start a new stride–more like a rabbit’s bounding run than a bear’s typical gait.

Sivolobov sent samples of the pelt to various zoologists in Russia, but they said there wasn’t much they could determine without a skull. But with DNA testing so much more advanced these days, it would be REALLY NICE if Sivolobov would get right on that and get his white bear pelt tested. If it really exists and if he’s not scared he was sold a marked-up polar bear skin with a tall tale.

The polar bear lives in the Arctic and is so closely related to the brown bear that the two species occasionally crossbreed when their range overlaps. Technically polar bears are marine mammals since they hunt seals on sea ice and spend a lot of time in the water. Sometimes a polar bear will drift for long distances on a piece of sea ice, or may swim for days, crossing hundreds of miles of ocean.

Polar bear feet are huge, around 12 inches wide or 30 cm, which helps keep the bear from sinking in the snow since its weight is more widely distributed on broad paws. Think snowshoes. Broad feet also helps it swim faster. The paw pads are bumpy so it’s less likely to slip on ice, and the claws are short and strong for digging in snow and ice. The polar bear stays warm because its body is heavily insulated with fat, plus its fur is thick with a soft undercoat that insulates so well that polar bears really are virtually invisible to heat-sensing radar. Male polar bears grow long fur on their forelegs, apparently because lady polar bears find that attractive. Unlike most other bears, polar bears don’t hibernate.

Georg Wilhelm Steller was a German naturalist who took part in explorations of Kamchatka Peninsula and other areas. He’s the guy that Steller’s sea-cow is named after and one day it’s getting its own episode. Anyway, in 1751 Steller wrote a book called, in English, Beasts of the Sea, and in it he mentions a report of a white sea-bear. He didn’t see it himself, but here’s his account, which I’ve taken from Karl Shuker’s excellent blog ShukerNature. I’ll link to it in the show notes.

Here’s the quote:

“Report, as I gather from the account of the people, has declared that the sea-bear, as it is called by the Rutheni and other people is different. They say it is an amphibious sea beast very like a bear, but very fierce, both on land and in the water. They told likewise, that in the year 1736 it had overturned a boat and torn two men to pieces; that they were very much alarmed when they heard the sound of its voice, which was like the growl of a bear, and that they fled from their chase of the otter and seals on the sea and hastened back to land. They say that it is covered with white fur; that it lives near the Kuril Islands, and is more numerous toward Japan; that here it is seldom seen. I myself do not know how far to believe this report, for no one has ever seen one, either slain or cast up dead upon the shore.”

Shuker suggests that this report may actually be of a fur seal, which is found in the area and has sometimes been called a sea-bear. Then again, fur seals aren’t white. They’re gray or brown and would appear darker in the water.

The Kuril Islands are a string of 56 volcanic islands that stretch between the northeastern tip of Hokkaido, Japan to the southern tip of Kamchatka Peninsula, a distance of about 810 miles, or 1300 km. Some of the largest islands are inhabited by brown bears, but it’s far from the Arctic. Polar bears get overheated easily in warmer areas, so a population of polar bears—or even a stray one—is unlikely that far south.

There are also stories of pure white bears in the forests of Hubei province in China. It’s always possible this is a garbled account of the panda, but maybe not.

In 1864, Inuit hunters supposedly killed a huge bear with yellowish fur. Naturalist Roderick McFarlane acquired the skin and skull and sent them to the Smithsonian, which promptly lost them. That’s the story, anyway. In fact, the Smithsonian did misplace the skin and skull for a while, but zoologist Clinton Hart Merriam found and examined them. He decided it was a new species of bear due to the skull’s odd shape and the light tan color of the fur.

Older polar bears do tend to have yellowish fur so maybe that’s all this bear was. But it might have been something else. As I mentioned earlier, polar bears and various subspecies of brown bear do sometimes crossbreed and produce fertile young. It’s rare, but it happens occasionally both in the wild and in captivity. The resulting babies show traits of both polar bears and brown bears, and tend to be pale brown or tan in color with darker brown paws. Then again, there’s a MonsterQuest episode that I haven’t actually seen where a paleontologist examines the McFarlane skull and states it’s just that of a young female brown bear.

For having only eight species, bears are remarkably widespread and vary considerably in diet and appearance. The sloth bear mostly eats insects, for instance. It lives in India and has shaggy black fur with a pale muzzle and white claws, big floppy ears, and a white V-shaped mark on the chest. It lacks upper incisors, which helps it slurp up insects.

Sloth bears are actually pretty darn awesome. Males often help raise the cubs and mothers carry their babies around on their backs. The sloth bear doesn’t hibernate, probably because it doesn’t really get cold where it lives.

The spectacled bear lives in South America. It’s the last close relative of the giant short-faced bear that went extinct about 11,000 years ago. The spectacled bear is mostly black, although some individuals may appear brown or reddish, and most but not all have lighter markings on the face and chest. Its head is much less bearlike than other bears, with a rounded face and short snout. It mostly eats plants and lives in the Andes Mountains and surrounding areas. It spends a lot of time in trees, and will even build a little platform in a tree to sleep on or store food on.

And you know what? Paddington Bear is modeled on the spectacled bear.

The spectacled bear is not especially scary. Its relative, the giant short-faced bear, was another story. It lived in North America, especially in California, and its remains have been found in the La Brea tar pits. But it also lived as far south as Mississippi. And it was huge. It was simply enormous. It stood up to 6 feet at the shoulder, or 1.8 meters, and twice that when standing on its hind legs. One website I read pointed out that regulation height for a basketball rim is ten feet, which means a giant short-faced bear could dunk the ball every time without doing anything more strenuous than standing up. It was probably an omnivore like most modern bears, but we have mastodon bones that show tooth marks from the short-faced bear.

Naturally, as with just about any extinct animal, people keep hoping they’re not really extinct and occasionally someone reports seeing a giant short-faced bear. Some cryptozoologists speculate that the Kamchatka Peninsula mystery bears may actually be short-faced bears, but since short-faced bear fossils have only been found in North America, it’s probably not likely that there would be any living in Russia. Besides, the short-faced bear would have looked very different from the brown bear, probably shaped more like a colossal spectacled bear. Locals would definitely notice the difference. Moreover, it’s not likely to live in the same area that already has a population of brown bears, since both animals would then be competing for the same resources.

Personally, while the giant short-faced bear is awesome to imagine, I’m perfectly happy with it not wandering around in the forests. Because I like to hike. And I worry enough about the relatively small and harmless American black bear as it is.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on iTunes or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 041: Comb Jellies and Sea Sponges THE CONTROVERSY

We’re learning about comb jellies this week, along with the sea sponge, and the MASSIVE CONTROVERSY ABOUT THE TWO THAT IS PITTING SCIENTIST AGAINST SCIENTIST I might be overstating it just a bit

The lovely Arctic comb jelly:

The lovely Venus’s girdle comb jelly:

A fossil comb jelly. Probably lovely when it was alive:

A sea sponge (most are not this Muppet-like):

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

For this week’s episode, we’re revisiting jellyfish, more properly known as jellies. The first jelly episode is far and away our most popular and I can’t figure out why. I mean, I’m glad people like it. This time, we’re going to learn all about comb jellies, which are not really as exciting as true jellies. There is no ship-sinkingly enormous comb jelly lurking in the oceans of the world. But they are really interesting.

When you think of a jelly, you probably picture a roughly bell-shaped thing with long stinging tentacles. But most comb jellies are more like egg-shaped blobs, and either don’t have tentacles at all or only have relatively small tentacles that don’t sting. Although they look alike superficially, comb jellies and true jellies are so different that scientists don’t think they’re very closely related at all. Comb jellies are officially called ctenophores (TEN-oh-fours), spelled with a c-t at the beginning if you were wondering. I looked up the pronunciation. Yeah, I know, I pronounced Pliny wrong all through episode 12, but come on, it looks like it should be pronounced Pliny and not Plinny. It’s not like anyone ever came up to me and said, “Hey, what about that Plinny, what a guy.” I just read the name.

But I digress, inexplicably.

Instead of pulsing its bell to maneuver in the water, a comb jelly has rows of tiny compact filaments called cilia, fused together in combs that help it swim. The combs are also called swimming plates.

There are two main types of comb jellies, those with tentacles and those without tentacles. The ones without are called Nuda, or Beroids, and while they don’t have tentacles, they do have combs of extra-large cilia, called macrocilia, that sever prey into pieces small enough to swallow. Mostly they eat other comb jellies. Beroids also have big mouths, but a beroid can actually seal its mouth shut while it’s moving so it’s more streamlined.

Comb jellies with tentacles are divided into eight orders roughly based on body shape. The most common order, the cydippida, are egg-shaped with a pair of thin tentacles that they use sort of like fishing lines. The tentacles are long and sticky, trapping tiny organisms or particles of food. Some species have branched tentacles but none have more than two. The tentacles can retract—when you see a picture of a comb jelly with a weird spring-like thing sticking out from its bottom, that’s a retracted tentacle, not anything gross like a poop. The tentacles contain cells called colloblasts. When an organism touches a tentacle, the colloblast cells rupture and basically release glue that keeps the prey from escaping.

A cydippid comb jelly also has eight combs that run from the top of the body to the bottom, which makes it look sort of like a fancy decorated egg. Comb jelly cilia are iridescent, by the way, so they reflect light in rainbow patterns. Basically what I’m saying is, these little guys are actually really pretty.

All comb jellies are predators, but most eat plankton and other tiny food, because most comb jellies are really small—only a few inches long at most. Bigger species may eat krill and small crustaceans. The biggest comb jelly, Cestum veneris, more often called Venus’s girdle, can grow some five feet long, or 1.5 meters, but only some two inches, or 5 cm, wide. It looks like a nearly transparent or purplish ribbon and lives in tropical and subtropical seas. I wouldn’t want to touch it, but it’s not exactly dangerous. In fact, it’s so delicate that a diver attempting to touch one may accidentally destroy it instead. A lot of comb jellies are that delicate, making them hard to study, so we still don’t know a whole lot about them.

Comb jellies only have one body opening, called a mouth for convenience sake although the jelly uses it for anything that requires a body opening. Until recently, researchers thought that included pooping. Yeah, now you see why it’s not exactly a mouth. But it turns out that a comb jelly has pores on the opposite end of its body from its mouth opening that it uses to release at least some particles of indigestible food. This is interesting since it helps scientists understand how the anus evolved.

There aren’t that many species of comb jellies, maybe 100 or so. But new ones are discovered occasionally, especially deep-sea comb jellies. While comb jellies that live near the surface of the ocean are usually transparent, many deep-sea species are red, since it’s a color most deep-sea animals can’t see. Most are also bioluminescent, and when threatened some species will secrete a luminescent goo. The predator may get confused and attack the goo while the comb jelly swims away as fast as its frantically waving cilia can take it.

If you’ve listened to episode 15, about the hammerhead shark and megalodon, you’ll remember that we don’t have a lot of shark fossils because shark skeletons are made of cartilage, not bone. We just have a lot of shark teeth, mostly. Now think about how big and solid sharks are, then think about how smooshy jellies are. Then try to imagine what a jelly fossil might look like. Yeah.

We do have some comb jelly fossils, though. But we don’t have many. Like, five. We have five. The oldest are from the mid-Cambrian, some 500 million years ago, but they were very different from the comb jellies living today. They had lots more combs, for one thing—between 24 and 80 instead of 8. Researchers have found other fossils that may be of comb jellies. There’s a good possibility that they were widespread throughout the oceans back then—but from genetic testing and other molecular analysis, it appears that the comb jellies alive today are all descended from a common ancestor that survived the Cretaceous-Paleogene extinction around 65 million years ago. So it’s possible that in addition to so many dinosaurs dying off, almost all comb jellies went extinct then too.

Just think, if that one species hadn’t survived and evolved into the comb jellies we have today, researchers might not have a clue what animal those comb jelly fossils represented. If you know about the Burgess shale fossils that have baffled and fascinated paleontologists for decades now, because so many of the fossils don’t resemble anything living today, then it’ll make sense to learn that a few of those five comb jelly fossils were actually found in the Burgess shale.

There are some other comb jelly fossils discovered in China and dated to 520 million years ago. But they don’t resemble the comb jellies living today at all because they had skeletons and spines. Pretty much every fossil found from the Cambrian had supportive or armored structures, even ones like comb jellies that don’t have those things today. I’ll probably do a whole episode eventually about the Cambrian period and the Burgess shale discoveries.

Anyway, there’s some controversy going on right now regarding whether comb jellies or sponges were the species that gave rise ultimately to all other animals, so let’s take a quick side trip and learn about sponges.

The sponge is a very simple animal, still around today. They don’t have any specialized structures like nerves or a digestive system or a circulatory system or organs. They’re just a sponge, basically. And if you were wondering, the sponge you use to clean your kitchen is named after the sea sponge, not vice versa, and you can still get actual dried sea sponges to use for cleaning. They’ve been used that way for millennia. It wasn’t until 1866 that scientists even realized sponges were animals and not plants.

Living sponges just hang out in the ocean or freshwater, stuck to a rock or something. Water flows through them and washes food and oxygen in and waste out. That’s it. That’s all a sponge does is let water flow through it. I feel like there’s a life lesson to be learned there, but I’m too busy doing ten things at once to figure it out.

Mostly sponges eat bacteria and other tiny food particles, although some eat small crustaceans and a few have developed a symbiotic relationship with plantlike microorganisms, which live safely in the sponge and produce enough food for both it and the sponge. Every so often a sponge will release eggs or sperm into the water. If the conditions around a sponge deteriorate, some species will create bundles of unspecialized cells called gemmules. When conditions improve, the gemmules will either grow into new sponges or, if the sponge that created them has died, it will recolonize the original sponge’s skeleton.

A sponge’s skeleton is a sponge, by the way. If you’ve got a natural sea sponge in your house, that’s what you’re cleaning your kitchen counters with, the skeleton of a sea sponge. Different sponges use different minerals to create their skeletons and most are pretty hard, but the ones sold as natural sponges are softer and throughout history have been used for everything from padding armor, applying paint, and filtering water. Loofah sponges aren’t actually made from sea sponges, though. They’re actually from the dried insides of the sponge gourd. I did not actually know that until just now.

Oh, and guess what else I just learned? There’s a small population of bottlenose dolphins in Western Australia that use sponges. The dolphins frequently hunt close to the bottom of the bay. To keep from scraping its rostrum, or bill, in the sand, a dolphin will sometimes stick a sponge under its chin. Researchers think that one especially smart dolphin figured this out and has been teaching her children how to do it ever since.

So that’s the sea sponge. Useful for many things, not much of a party animal. Compared to sea sponges, comb jellies are intellectual masterminds. Even though comb jellies don’t have brains.

Instead, comb jellies have a nerve net. The nerves are concentrated around its mouth and on its tentacles. It does also contain an organ that helps the jelly sense its orientation, basically so it knows which way is up. It usually swims with its mouth pointing upward, incidentally. But while the comb jelly’s nervous system is pretty sophisticated for such a simple animal, it’s also very different from other animals’ nervous systems. Like, super different. Its nerves are constructed from different molecules and use different neurotransmitters.

Its nerve cells are so different from other animals’ that some researchers think it actually evolved separately. Specifically, neuroscientist Leonid Moroz thinks so. He thinks that the first ancestor of comb jellies split off from the sea sponges some three quarters of a billion years ago and evolved separately from all other animals.

Since comb jellies use a different set of chemicals as other animals to accomplish the same tasks, a couple of articles I read make a big deal about how evolution must therefore follow a prescribed path—that animals must have certain traits to survive. But assuming comb jellies did split off from sponges that early and did evolve separately from other animals, they were still competing against those other animals. It’s not like they had an ocean to themselves, although that would be awesome if they did, because who knows what they might have evolved into?

The controversy about whether sea sponges or comb jellies were basically the trunk of the tree of animal life started in 2008, when a study in the journal Nature compared DNA sequences across a number of animal species and suggested that the comb jellies were evolutionarily first. A 2013 paper published in Science by another team of researchers made the same conclusion based on the genome of a species of comb jelly called the sea walnut. That is such a cute name. Don’t you just want to cuddle the little sea walnut and make little hats for it?

All this ignited what some articles call a firestorm of controversy. I like to imagine researchers reading the articles and FREAKING OUT. Moroz’s studies of the comb jelly’s nervous system, and the complete genome of a different comb jelly, the sea gooseberry, appeared in Nature in 2014. Moroz now thinks that nervous systems have developed independently at least nine times in various different groups.

The controversy at this point appears to have several factions. Moroz’s group thinks comb jellies split off from sponges, and that everything else split off from comb jellies but developed separately in the neurological sense. Another group thinks comb jellies split off from sponges and everything evolved from comb jellies, and that comb jellies aren’t all that weird neurologically. Another group thinks comb jellies and sponges split off from a common ancestor of both that had a simple nervous system, which comb jellies retained but sponges lost, and that everything else evolved from comb jellies. But then there’s the other side, the ones who think sure, comb jellies split off from sponges, but so did everything else ultimately, and comb jellies are no more the base of all animal life than the man in the moon.

One thing everyone agrees on, though, is that we still don’t know enough about comb jellies. And they are really pretty.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on iTunes or whatever platform you listen on. We also have a Patreon if you’d like to support us that way. Rewards include stickers and twice-monthly bonus episodes.

Thanks for listening!