Episode 276: Hominins and Art

It’s Nicholas’s episode this week, and Nicholas wants to learn more about hominins, the ancestors and cousins of modern humans!

Happy birthday to Autumn! I hope you have a great birthday!

Further listening:

Humans Part One

Further reading:

Were Neanderthals the Earliest Cave Artists?

Neanderthals Built Mysterious Stone Circles

DNA reveals first look at enigmatic human relative

What does it mean to have Neanderthal or Denisovan DNA?

Hand and footprint art dates to mid-Ice Age

Risky food-finding strategy could be the key to human success

A stone circle in a cave was probably built by Neandertals:

A deer bone with carving on it probably made by Neandertals:

Some cave paintings probably made by Neandertals:

Show transcript:

Welcome to Strange Animals Podcast! I’m your host, Kate Shaw.

This week is Nicholas’s episode! Nicholas wanted an updated episode about hominins, our ancient ancestors or species closely related to modern humans. The last time we talked about hominins was way back in episodes 25 and 26, so it’s definitely time to revisit the topic.

But first, a big birthday shout-out to Autumn! Happy birthday, Autumn, and I hope you have the best birthday so far!

If you haven’t listened to episode 25 in a while, or ever, I recommend you go back and give it a listen if you want background information about how humans evolved and our closest extinct relatives, Neandertals and Denisovans. I’ve transcribed that episode finally, so you can read the episode instead of listen to it if you prefer. There’s a link in the show notes.

Results of a study published in January 2022 in the journal Nature has finally dated the oldest known Homo sapiens remains found so far. The remains were found in Ethiopia in the 1960s but the volcanic ash found over them was too fine-grained to date with any certainty. Finally, though, the eruption has been determined to come from a volcano almost 250 miles, or 400 km, away from the remains. The Shala eruption was enormous and took place 230,000 years ago, so since the remains were found below the ash, the person had to have lived at least 230,000 years ago too.

We’re still learning more about humans and our closest relations because new hominin fossils are being found and studied all the time. But the fossil record doesn’t tell the whole story. Only a small percentage of bones ever fossilize, and of those, only a tiny fraction are ever found by scientists. But technological advances in genetic testing means that scientists can now extract DNA from the soil. All animals shed fragments of DNA all the time, from skin cells and hairs to poop. A study published in 2021 was able to isolate Neandertal DNA from sediments in three different caves. The DNA matched the known fossils found at the sites and gave more information besides. Instead of being restricted to a single individual whose bones were found and tested, genetic testing of sediments gives genetic information about lots of individuals. In the case of a cave in northern Spain, where lots of stone tools have been found but only a single Neandertal toe bone, it turns out that two different populations of Neandertal had lived in the cave over 100,000 years ago.

In episode 25, I mentioned that Neandertals didn’t seem to make things the way humans do, especially art. Some researchers even suggest that they couldn’t think symbolically the way humans do. But in the five years or so since that episode, we’ve learned a lot more about Neandertals–and they seem to have been pretty artistic after all.

The main problem is that historically, whenever scientists found rock art or carvings from prehistoric times, they assumed humans made it. We might be a little biased. Some art originally thought to be made by humans is now thought to have been made by Neandertals. Most of it is found in caves. Remains of animals are often found in caves because the cave protects them from weather and other factors that can destroy them, and the same is true for archaeological remains.

In 1990, a team of cavers dug into a narrow collapsed cave entrance and entered Bruniquel Cave in southwest France that no human—in fact, no animal from the surface world—had entered since the entrance collapsed during the Pleistocene. That was at least 24,000 years ago and probably much, much longer.

The cavers found the bones of long-extinct Pleistocene megafauna near the entrance, including cave bears. But it wasn’t until they reached a chamber deeper inside the cave that they made a stupendous discovery.

The chamber held a big stone circle made of broken-off pieces of stalactite and stalagmite and other rock formations. The pieces are all about the same size and are arranged in a circle almost 22 feet across, or 6.7 meters. There’s a smaller semicircle in the chamber too and heaps of more stone pieces. Some of the stones show signs of fires being lit on top of them, and a piece of burnt bone from a bear or other large animal was found near the semicircle.

The cavers alerted local scientists, who came to investigate. At first they thought the structures had been built by early humans. They took samples for testing, and that’s when they got another shock. The burnt bone, the fire residue, and the minerals growing over both revealed an age long before 40,000 years ago, which is when humans first moved into the area. The stone circle was built 176,000 years ago. And the only hominin known to live in Europe that long ago was the Neandertal.

We don’t know what Neandertals used the stone circles for. It might have been a living space, but it might have been religious in nature instead. Either way, it shows that even that long ago, Neandertals had full control over fire to the point that they could make light sources to find their way deep into a cave, and had the curiosity to want to explore deeper into a cave than they really needed to go for shelter.

There are lots of other examples of Neandertal art and intelligence found in Europe. For instance, paintings in a cave in Spain have been dated to at least 65,000 years ago. Remember, humans didn’t reach Europe until about 40,000 years ago. The paintings are made of red mineral pigment, including elaborate rows of dots, geometric figures, and occasionally animal figures and hand stencils. Other caves in the area also have similar rock art dating to Neandertal times.

In a cave in Germany, researchers found a piece of deer bone dated to 51,000 years ago that has a carved pattern in it. The carving is too elaborate to be simple butcher marks, but again, humans hadn’t yet moved into Europe 51,000 years ago. The bone actually comes from the leg of a giant deer, once called the Irish elk, that we talked about way back in episode 4. In another cave in Gibraltar, cross-hatched patterns carved in the rock have been dated to more than 39,000 years ago and are associated with artifacts made by Neandertals.

Archaeologists have also found a lot of toe bones from eagles that are etched with cut marks, found in various sites throughout southern Europe. They think Neanderthals in this area wore eagle talons as jewelry, and most likely feathers too.

There’s still controversy when it comes to Neandertals and art. Some researchers think Neandertals only used art after they saw humans making it. Some think the art isn’t art at all but something else, like accidental marks left by other activities. Some think the dating methods used to determine the age of paintings is flawed.

Another criticism is that we don’t actually know that Neandertals made the art; we just know it probably couldn’t have been humans. But there were other human relations living at the same time.

One of those is the Denisovan people, named for Denisova Cave in the mountains of Siberia. Hominins didn’t ordinarily live in caves, but sometimes they did. This seems to be the case in Denisova Cave, where evidence of human habitation, Neandertal habitation, and habitation by another hominin goes back some 180,000 years.

Researchers knew about humans and Neandertals living in the cave, but it wasn’t until 2010 that they realized a third hominin had lived there at various times. The Denisovan people were closely related to both Neandertals and humans and probably looked a lot like Neandertals, with a robust build and big teeth. We still don’t know a whole lot about them, but they lived in parts of what is now Asia and possibly nearby areas, and they might not have gone extinct until about the same time that Neandertals did, around 30,000 years ago.

We talked about the Denisovans in episode 25, but since then new remains have been discovered in other caves. The most exciting is a partial jawbone with two teeth that was found by a Buddhist monk in a cave on the Tibetan plateau in 1980, but not studied until much later. It was identified as a Denisovan mandible in 2019 and dated to 160,000 years ago.

Genetic testing of Denisovan remains indicate that Denisovans and Neandertals were probably more closely related to each other than to humans, although all three species were very closely related. Since there are so few Denisovan remains known, we don’t have a very good idea yet of where they lived and what they were like. We do have genetic markers that indicate the Denisovans had dark skin, brown hair, and brown eyes, while Neandertals, like humans, were more varied in skin, hair, and eye color.

Geneticists have identified traces of Denisovan DNA in some populations of modern humans, including in Asia, New Guinea and surrounding areas, and Australia. This is a reminder that even though some human populations contain DNA traces from our extinct cousins, all humans are thoroughly human. Those bits and bobs of ancient DNA are too small to be significant.

We do have what seems to be art made by Denisovans, although not everyone agrees that it was intended to be art in the way we think of it. It was found in the Tibetan Plateau and we now know that Denisovans lived in the area, although when it was found in 1998 we didn’t even know Denisovans existed. The art was found near hot springs and dated to as much as 226 thousand years ago, although it might have been closer to 169 thousand years ago. Either way, it was well before modern humans are known to have lived in the area. The art consists of footprints and hand prints pressed into the mud, probably by two individuals. The artists pressed their hands, feet, fingers, thumbs, and in one case a forearm into the mud around the hot springs, making patterns. But the thing is, these prints are small even by human standards. Researchers are pretty sure they were made by children, so while it’s certainly possible the children were creating art, they also might just have been messing around having fun in the mud. But the fact that they were making patterns points to an artistic intelligence. Puppies play and may stomp their feet in mud, but they don’t get interested in making patterns of their footprints in the mud. Human children do.

There’s still at least one other hominin that lived at the same time as Neandertals, Denisovans, and humans. We only know about that hominin because researchers have identified their DNA in genetic studies of Denisovans, which means they interbred. It’s a ghost lineage that no one guessed existed until genetic studies of Denisovans and Neandertals were completed in the early 2010s. It might turn out to be a known hominin such as Homo erectus but it might be a completely unknown species.

Of course we have lots of information about art made by ancient humans. It’s been found throughout the world. No one’s in any doubt that our prehistoric ancestors were just as intelligent and artistic as humans who live today, they just didn’t have the technology we have. I can go to an art supply store and buy paints in any color I want, assuming I don’t just want to paint digitally, but in prehistoric times human artists had to make their own paints from the things they found in nature. This included minerals like red ochre and yellow ochre, umber, calcite, hematite, iron oxide, and lots more. They used burnt bones and charcoal for black. These minerals are all still used to make modern oil paints (used in art, not for painting a room or a house), with names like bone black and lime white.

Many minerals have to be processed before they can be used as pigments. Ochre, for instance, has to be heated to 850 degrees Fahrenheit, or 750 Celsius, to change into the rich red-orange that ancient artists especially liked. After processing, the pigments were ground into powder, then mixed with various substances to make a paste. These substances included fat, blood, spit, plant oils, tree sap, water, bone marrow, and even urine.

Ancient artists used their fingers to paint, but they also used twigs, brushes made from animal hair, and mats of lichen. Sometimes they blew pigment onto a surface with their breath, first putting the paint into a hollow tube and then blowing into the tube to spray paint. This is the same way airbrushes work, but no one gets light-headed using an airbrush because a machine is doing the blowing air part. If the artist was working in a cave, they also needed a light source, specifically fire, so they could see what they were doing. It’s all a lot of work.

Aside from all the details involved in getting ready to paint, making art takes one other really important commodity: time. Great apes spend most of their time finding food and eating it. How did ancient humans find time to paint without starving?

A study released in early 2022 points out that hominins developed a much different strategy for getting food than our more distant ape relations. Apes mostly eat plant material, especially fruit, which is nutritious but takes a lot to fulfill the calorie needs of an adult. Early hominins were hunter-gatherers, meaning they both hunted animals and gathered plant material to eat. But because hominins are intensely social and share food, we could take risks that other animals can’t. A group of ancient humans could go out to hunt something big knowing that even if they failed, when they got home they wouldn’t go hungry. Other people would have been gathering food all day and would share. But if the hunters got lucky and brought home a big animal like a deer, everyone had lots and lots of high calorie food to go around. With food available to everyone, people could take time to do things that didn’t directly relate to finding food, like art.

Not only that, another study published in 2019 discovered that some early hominins had already figured out how to preserve food several hundred thousand years ago. The food in question was bone marrow, which is found inside bones and which is extremely nutritious. Researchers have always assumed hominins would crack the bones of animals they killed to get at the marrow as soon as possible. But deer bones found in a cave near Tel Aviv, Israel were stored unbroken, with the skin still on. Researchers determined that the bones were kept in the cave for up to nine weeks before being broken open. By keeping the skin on the bones and storing them in the cave, where the temperature was cool, the marrow stayed fresh. That way there was always something nutritious to eat in the cupboard, so to speak.

Art doesn’t have to be paintings or carvings. Ancient humans were probably using plant fibers to make things more than 34,000 years ago. The fibers are from wild flax plants, and flax is still used today to make linen fabric. Fragments of flax fibers were found in a cave in the Republic of Georgia (which is a country, not the American state of Georgia) where other human artifacts were found. Since flax isn’t edible, at least not by humans, researchers think the fiber might have been used to make thread, rope, baskets, and possibly even cloth. You know, clothing.

One thing to remember is that humans, Neandertals, and Denisovans were so closely related that they could and did interbreed and produce fertile offspring. That means not only were our extinct cousins very similar to us physically, they were probably pretty similar to us mentally too. It would be more surprising if they didn’t produce art that represented symbolic thinking, since it’s such an important part of the human experience.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 273: Noisy Invertebrates

Thanks to Isaac, Joel, Ethan, and Richard E. for their suggestions this week!

Don’t forget to check out our crowdfunding campaign for some cute enamel pins!

Further reading:

Snapping Shrimp Drown Out Sonar with Bubble-Popping Trick

One example of a pistol shrimp–there are many, many species (photo from this site):

A walnut sphinx moth sitting on someone’s hand (photo by John Lindsey, found on this page):

A caterpillar (photo by Ashley Bosarge, found on this page):

The Asian longhorned beetle (from this site):

The white-spotted sawyer pine beetle is another type of longhorned beetle:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s been too long since we’ve had an invertebrates episode, so this week let’s learn about some invertebrates that make noise. Thanks to Isaac, Joel, Ethan, and Richard E. for their suggestions!

We don’t have a birthday shout-out this week, but we do have a reminder that the next five episodes, the ones releasing in May, are our Kickstarter episodes! Those are from the Kickstarter level where the backer got to choose the topic and work with me to craft the episode. I’ve been amazed at how fantastic those episodes turned out, and I think you’ll like them.

Speaking of crowdfunding campaigns, a quick reminder that the Tiny Pin Friends Indiegogo is still going on. It’s sort of stuck halfway to our goal, probably because I got busy with the book release and haven’t been telling people about the pins, so if you want to take a look at the pin designs, there’s a link in the show notes. Thanks!

Now, on to the invertebrates! Both Isaac and Joel suggested the same topic at different times, pistol shrimp. This is a group of shrimps also called snapping shrimps. Most species live in warm, shallow coastal habitats like coral reefs, but some live in colder water and at least one lives in freshwater caves.

The pistol shrimp only grows a few inches long at most, or about 5 cm. It gets its name from its big claw, which functions in a similar way to the workings of a pistol (sort of). But instead of shooting bullets, the claw shoots bubbles—but so incredibly fast, they might as well be bullets.

A pistol shrimp has two claws, but one is small and used for picking stuff up and grabbing food. The other claw is the pistol claw that’s much bigger and stronger. Which claw is which depends on the individual, and if a shrimp’s pistol claw gets damaged or bitten off, its other claw will develop into a pistol claw. The damaged or lost claw eventually regenerates into a little claw for manipulating food.

The pistol shrimp is mostly an ambush hunter. It will hide in a burrow or rock crevice with its antennae sticking out, and when a small animal like a fish happens by, the shrimp will emerge from its hiding place just far enough to get a good shot at the animal. It opens its big claw and snaps it shut so fast and so forcefully that it shoots tiny bubbles out at speeds of over 60mph, or 100 km/hour. Obviously the bubbles don’t travel very far at that speed, really only a few millimeters, but it’s powerful enough at this short range to stun or outright kill a small animal. The shrimp then grabs its stunned or dead prey and drags it back into its hiding spot to eat.

The process is way more complicated than it sounds. When the claw opens, water rushes into a tiny chamber in the claw. When it snaps closed, a tiny point on the claw pushes into the chamber, which leaves no room for the water. The water is therefore forced out of the chamber at such incredibly high pressure that it leaves vapor-filled cavities in the water, the bubbles, which collapse with a loud snapping sound. The pressure wave from the collapsing bubble is what actually kills or stuns an animal. Physics! I don’t understand it! Check the show notes for an article that goes into more detail about this process, which I’ve hopefully described correctly.

The bubble’s collapse makes such a loud noise that the pistol shrimp is one of the loudest animals in the ocean, but the sound lasts for less than a millisecond. It takes 100 to 400 milliseconds for you to blink your eye, to give you a comparison. The collapsing bubble also produces light and intense heat, but it’s such a tiny bubble with such a limited range that the heat and light don’t make any difference. The light isn’t very bright and lasts such a tiny amount of time that the human eye can’t even perceive it.

The pistol shrimp doesn’t only use its big claw to hunt for food and defend itself from potential predators. It also communicates with other pistol shrimp with the sound, and pistol shrimp can live in colonies of hundreds of individuals. With them all snapping together, no matter how short each snap is, the collective sound can be incredibly loud—so loud it interferes with sonar in submarines.

This is what it sounds like, although it also kind of sounds like popcorn popping, if you ask me:

[snapping shrimp sounds]

Next, Ethan suggested the walnut sphinx moth, because his son found one, they looked it up, and they were both amazed at how awesome it is. It lives in the eastern part of North America and is a big, robust moth with a wingspan up to 3 inches across, or 7.5 cm. Its wings and body are mostly brown and gray, often with darker and lighter markings but sometimes all one color. The edges of its wings have an uneven scallop shape and when it perches, it spreads both pairs of wings out in a sort of X shape. Its wing shape and coloring make it look a lot like an old dead leaf.

Like many moths, the walnut sphinx moth doesn’t eat at all as an adult. After it metamorphoses into an adult, it only lives long enough to mate and lay eggs. It spends most of its life as a caterpillar, where it eats the leaves of various kinds of trees, especially nut trees, including walnut, hazelnut, and hickory. The caterpillar is a pretty green with tiny white dots all over and yellow or white streaks along its sides, although some individuals are red, orange, or pink instead of green. It has a red or green horn on its tail end.

The most amazing thing about this moth is how the caterpillar keeps from being eaten. Lots of animals like to eat caterpillars, especially birds, but when a bird tries to grab this caterpillar, it thrashes around and actually makes a sound! You don’t typically think of caterpillars as noisy. It’s actually not very loud, but it does make a little whistle that mimics a bird’s alarm call, and can make a little buzzing sound too. The caterpillar makes the sound through its breathing tubes, called spiracles.

Researchers have played the caterpillar’s whistle sound at bird feeders and the birds react as though they’re hearing a bird making an alarm call.

This is what the whistle sounds like [whistle] and this is what the buzzing sounds like [buzz].

Richard E. recently tweeted some amazing pictures of beetles and suggested we cover more beetles, and I totally agree! We’ll finish with a beetle that makes this weird creaky sound:

[beetle sound]

The Asian longhorned beetle is sometimes called the starry sky beetle because it’s black with white dots. It’s native to eastern China and Korea, but it’s an invasive species in North America, parts of Europe, and other parts of Asia. It can grow about an inch and a half long, or 4 cm, but its antennae are up to twice as long as its whole body.

The female chews little holes in the bark of a tree and lays a single egg in each hole. When the larva hatches, it burrows deeper into the tree, eating sap and wood, until it’s ready to pupate. When it emerges as an adult, it chews its way out of the tree for the first time in its life, and flies away to find a mate. It especially likes poplar, maple, and willow trees. If enough beetle larvae are eating their way through a tree, the tree becomes weakened and can lose branches or even die.

There are lots of other species of longhorned beetle, though, and a lot of them make creaky scraping sounds. The male has ridges on his head that he scrapes along his thorax to attract a mate.

The white-spotted sawyer, also called the pine beetle, is native to North America and is black with a single white spot at the base of the wings, and sometimes with more white spots on the wings. It looks a lot like the Asian longhorned beetle but has black antennae whereas the Asian beetle has black and white antennae.

Like the many other longhorned beetle species, the female chews little holes in a tree to lay eggs in, but in this case she prefers pine and spruce trees, especially ones that are dead or dying or have sustained fire damage. The male white-spotted sawyer finds a good tree and defends it from other males, and if a female likes the tree she’ll mate with the male. But while the male keeps other males away, other females sometimes sneak in and lay eggs in the holes the female has already chewed in the tree. These nest holes take a long time to make and if a female can sneak some of her eggs into holes another female has already made, it saves her a lot of effort.

In addition to the male making a creaking noise to attract a mate, longhorned beetle larvae just generally make a lot of noises as they chew their way through a tree. If you’re ever walking through the woods and hear this sound, now you know what it is:

[creaky beetle sound]

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 269: Gila Monsters, Basilisks, and Sand Boas, oh my!

Thanks to Zachary, Enzo, and Oran for their suggestions this week! Let’s learn about some interesting reptiles!

Happy birthday to Vale! Have a fantastic birthday!!

The magnificent Gila monster:

The Gila monster’s tongue is forked, but not like a snake’s:

The remarkable green basilisk (photo by Ryan Chermel, found at this site):

A striped basilisk has a racing stripe:

I took this photo of a basilisk myself! That’s why it’s a terrible photo! The basilisk is sitting on a branch just above the water, its long tail hanging down:

The desert sand boa:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about three weird and interesting reptiles, with suggestions from Zachary, Enzo, and Oran, including a possible solution to a mystery animal we’ve talked about before!

But first, we have a birthday shoutout! A very happy birthday to Vale! You should probably get anything you want on your birthday, you know? Want a puppy? Sure, it’s your birthday! Want 12 puppies? Okay, birthday! Want to take your 12 puppies on a roadtrip in a fancy racecar? Birthday!

Our first suggestion is from Enzo and Zachary, who both wrote me at different times suggesting an episode about the Gila monster. How I haven’t already covered an animal that has monster right there in its name, I just don’t know.

The Gila monster is a lizard that lives in parts of southwestern North America, in both the United States and Mexico. It can grow up to two feet long, or 60 cm, including its tail. It’s a chonky, slow-moving lizard with osteoderms embedded in its skin that look like little pearls. Only its belly doesn’t have osteoderms. This gives it a beaded appearance, and in fact the four other species in its genus are called beaded lizards. Its tongue is dark blue-black and forks at the tip, but not like a snake’s tongue. It’s more like a long lizard tongue that’s divided at the very end.

The Gila monster varies in color with an attractive pattern of light-colored blotches on a darker background. The background color is dark brown or black, while the lighter color varies from individual to individual, from pink to yellow to orange to red. You may remember what it means when an animal has bright markings that make it stand out. It warns other animals away. That’s right: the Gila monster is venomous!

The Gila monster has modified salivary glands in its lower jaw that contain toxins. Its lower teeth have grooves, and when the lizard needs to inject venom, the venom flows upward through the grooves by capillary force. Since it mostly eats eggs and small animals, scientists think it only uses its venom as a defense. Its venom is surprisingly toxic, although its bite isn’t deadly to healthy adult humans. It is incredibly painful, though. Some people think the Gila monster can spit venom like some species of cobra can, but while this isn’t the case, one thing the Gila monster does do is bite and hold on. It can be really hard to get it to let go.

The fossilized remains of a Gila monster relative were discovered in 2007 in Germany, dating to 47 million years ago. The fossils are well preserved and the lizard’s teeth already show evidence of venom canals. The Gila monster is related to monitor lizards, although not closely, and for a long time people thought it was almost the only venomous reptile in the world. These days we know that a whole lot of lizards produce venom, including the Komodo dragon, which is a type of huge monitor lizard.

In 2005, a drug based on a protein found in Gila monster venom was approved for use in humans. It helps manage type 2 diabetes, and while the drug itself is synthetic and not an exact match for the toxin protein, if researchers hadn’t started by studying the toxin, they wouldn’t have come up with the drug.

The Gila monster lives in dry areas with lots of brush and rocks where it can hide. It spends most of its time in a burrow or rock shelter where it’s cooler and the air is relatively moist, and only comes out when it’s hungry or after rain. It eats small animals of various kinds, including insects, frogs, small snakes, mice, and birds, and it will also eat carrion. It especially likes eggs and isn’t picky if the eggs are from birds, snakes, tortoises, or other reptiles. It has a keen sense of smell that helps it find food. During spring and early summer, males wrestle each other to compete for the attention of females. The female lays her eggs in a shallow hole and covers them over with dirt, and the warmth of the sun incubates them.

The Gila monster is increasingly threatened by habitat loss. Moving a Gila monster from a yard or pasture and taking it somewhere else actually doesn’t do any good, because the lizard will just make its way back to its original territory. This is hard on the lizard, because it requires a lot of energy and exposes it to predators and other dangers like cars. It’s better to let it stay where it is. It eats animals like mice and snakes that you probably would rather not have in your yard anyway, and as long as you don’t bother it, it won’t bother you. Also, it’s really pretty.

Next, Oran wants to learn more about the basilisk lizard. We talked about it very briefly in episode 252 and I actually saw two of them in Belize, so they definitely deserve more attention.

The basilisk lives in rainforests from southern Mexico to northern South America. There are four species, and a big male can grow up to three feet long, or 92 cm, including his long tail. The basilisk’s tail is extremely long, in fact—up to 70% of its total length.

Both male and female basilisks have a crest on the back of the head. The male also has a serrated crest on his back and another on his tail that make him look a little bit like a tiny Dimetrodon.

The basilisk is famous for its ability to run across water on its hind legs. The toes on its large hind feet have fringes of skin that give the foot more surface area and trap air bubbles, which is important since its feet plunge down into the water almost as deep as the leg is long. Without the air trapped under its toe fringes, it wouldn’t be running, it would be swimming. It can run about 5 feet per second, or 1.5 meters per second, for about three seconds, depending on its weight. It uses its long tail for balance while it runs.

When a predator chases a basilisk, it rears up on its hind legs and runs toward the nearest water, and when it comes to the water it just keeps on running. The larger and heavier the basilisk is, the sooner it will sink, but it’s also a very good swimmer. If it’s still being pursued in the water, it will swim to the nearest tree and climb it, because it also happens to be a really good climber.

The basilisk can also close its nostrils to keep water and sand out, which is useful because it sometimes burrows into sand to hide. It can also stay underwater for as long as 20 minutes, according to some reports. It will eat pretty much anything it can find, including insects, eggs, small animals like fish and snakes, and plant material, including flowers. It mostly eats insects, though.

Fossil remains of a lizard discovered in Wyoming in 2015 may be an ancestor to modern basilisks. It lived 48 million years ago and probably spent most of its time in trees. It had a bony ridge over its eyes that shaded its eyes from the sun and also made it look angry all the time. It grew about two feet long, or 61 cm., and may have already developed the ability to run on its hind legs. We don’t know if it could run on water, though.

Finally, Zachary also suggested the sand boa. Sand boas are non-venomous snakes that are mostly nocturnal. During the day the sand boa burrows deep enough into sand and dirt that it reaches a cool, relatively moist place to rest. At night it comes out and hunts small animals like rodents. If it feels threatened, it will dig its way into loose soil to hide. It’s a constrictor snake like its giant cousin Boa constrictor, but it’s much smaller and isn’t aggressive toward humans.

Zachary thinks that the sand boa might actually be the animal behind sightings of the Mongolian death worm. We’ve talked about the Mongolian death worm in a few episodes, most recently in episode 156.

The Mongolian death worm was first mentioned in English in a 1926 book about paleontology, but it’s been a legend in Mongolia for a long time. It’s supposed to look like a giant sausage or a cow’s intestine, reddish in color and said to be up to 5 feet long, or 1.5 meters. It mostly lives underground in the western or southern Gobi Desert, but in June and July it surfaces after rain. Anyone who touches the worm is supposed to die painfully, although no one’s sure how exactly it kills people. Some suggestions are that it emits an electric shock or that it spits venom.

Mongolia is in central Asia and is a huge but sparsely populated country. At least one species of sand boa lives in Mongolia, although it’s rare. This is Eryx miliaris, the desert sand boa. Females can grow up to 4 feet long, or 1.2 meters, while males are usually less than half that length. Until recently it was thought to be two separate species, and sometimes you’ll see it called E. tataricus, but that’s now an invalid name.

The desert sand boa is a strong, thick snake with a blunt tail and a head that’s similarly blunt. In other words, like the Mongolian death worm it can be hard to tell at a glance which end is which. Its eyes are small and not very noticeable, just like the death worm. It’s mostly brown in color with some darker and lighter markings, although its pattern can be quite variable. Some individuals have rusty red markings on the neck.

It prefers dry grasslands and will hide in rodent burrows. When it feels threatened, it will coil its tail up and may pretend to bite, but like other sand boas it’s not venomous and is harmless to humans.

At first glance, the desert sand boa doesn’t seem like a very good match with the Mongolian death worm. But in 1983, a group of scientists went searching for the death worm in the Gobi. They were led by a Bulgarian zoologist named Yuri Konstantinovich Gorelov, who had been the primary caretaker of a nature preserve in Mongolia for decades and was familiar with the local animals. The group visited an old herder who had once killed a death worm, and in one of those weird coincidences, while they were talking to the herder, two boys rushed in to say they’d seen a death worm on a nearby hill.

Naturally, Gorelov hurried to the top of the hill, where he found a rodent burrow. Remember that this guy knew every animal that lived in the area, so he had a good idea of what he’d find in the burrow. He stuck his hand into it, which made the boys run off in terror, and pulled out a good-sized sand boa. He draped it around his neck and sauntered back to show it to the old herder, who said that yes, this was exactly the same kind of animal he’d killed years before.

That doesn’t mean every sighting of a death worm is necessarily a sand boa. I know I’ve said this a million times, but people see what they expect to see. The death worm is a creature of folklore, whether or not it’s based on a real animal. If you hear the story of a dangerous animal that looks like a big reddish worm with no eyes and a head and tail that are hard to distinguish, and you then see a big snake with reddish markings, tiny eyes, and a head and tail that are hard to distinguish, naturally you’ll assume it’s a death worm.

At least some sightings of the death worm are actually sightings of a sand boa. But some death worm sightings might be due to a different type of snake or lizard, or some other animal—maybe even something completely new to science. That’s why it’s important to keep an open mind, even if you’re pretty sure the animal in question is a sand boa. Also, maybe don’t put your bare hand in a rodent burrow.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 268: Rediscovered Animals!

My little cat Gracie got lost but she’s home! Let’s learn about some other rediscovered animals this week!

A very happy birthday to Seamus! I hope you have the best birthday ever!

Further listening:

The Casual Birder Podcast (where you can hear me talk about birding in Belize!)

Further reading:

Bornean Rajah Scops Owl Rediscovered After 125 Years

Shock find brings extinct mouse back from the dead

Rediscovery of the ‘extinct’ Pinatubo volcano mouse

Gracie, home at last! She’s so SKINNY after a whole week being lost but she’s eating lots now:

The Bornean Rajah scops owl (photo from article linked above):

The djoongari is the same as the supposedly extinct Gould’s mouse (photo from article linked above):

The Pinatubo volcano mouse:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

While I was researching animals discovered in 2021, I came across some rediscoveries. I thought that would make a fun episode, so here are three animals that were thought to be extinct but were found again!

A couple of quick things before we get started, though.

First, happy birthday to Seamus! I hope you have a brilliant birthday and that it involves family, friends, or at least your favorite kind of cake, but hopefully all three.

Next, a few weeks ago I appeared on the Casual Birder Podcast talking in depth about my trip to Belize and some of the birds I saw there. I’ll put a link in the show notes. It’s a great podcast that I really recommend if you’re interested in birding at all, and the host has such a lovely calming voice I also recommend it if you just like to have a pleasant voice in the background while you do other stuff.

Finally, thanks for the well wishes from last week, when I let our emergency episode run. I’m actually fine, but my little cat Gracie got frightened while I was bringing her into the house from a vet visit, and she ran away. That was on Friday, March 11 and I spent all night looking for her, but then we had a late-season snowstorm come through and dump six inches of snow on my town, which made me even more frantic. At dawn on Saturday I put on my boots and heavy coat and spent all day searching for Gracie, and on Sunday I was still searching for her. I didn’t have time to work on a new episode. In fact, I searched every day as much as possible all week long, until I was certain she was gone forever. I couldn’t bring myself to work on this episode because rediscovered animals just seemed like a cruel joke when my little cat was gone. I was almost done with a different episode when on Saturday night, March 19, 2022, eight full days after Gracie had disappeared, I got a phone call. Someone had seen a little gray cat under their shed, over half a mile from my house! I rushed over and THERE WAS GRACIE! I found her! She is home!

So I’ve been researching rediscovered animals with Gracie purring in my lap, in between her going to her bowl to eat. She’s lost a lot of weight but other than that she seems healthy, and she’s very happy to be home.

The person who found Gracie first noticed her around their birdfeeder, so we’ll start with a rediscovered bird.

There are two subspecies of Rajah scops owl that are only found on two islands in southeast Asia, Borneo and Sumatra. The subspecies that lives in Sumatra is fairly common throughout the mountains on that island, where it lives in the lower branches of trees in higher elevations. It’s a tiny owl that only weighs about 4 ounces, or 100 grams. As the article I link to in the show notes points out, that’s about the weight of four AA batteries.

The subspecies that lives on Borneo, though, was always much rarer and had a much smaller range. In fact, no one had seen one since 1892 and researchers thought it was probably extinct. There’s another owl that lives in the mountains of Borneo, the mountain scops owl, that’s fairly common.

In May of 2016, a team of scientists started a 10-year study of birds that lived on Mount Kinabalu in the country of Malaysia in northern Borneo. One team member, Keegan Tranquillo, was checking bird nests that very same month and noticed an owl that didn’t look like the mountain scops owl. It was larger and its plumage was different.

Tranquillo contacted ecologist and bird expert Andy Boyce, who came out to take a look. When he saw the owl, Boyce was excited at first but then filled with anxiety. He knew the owl must be incredibly rare and would be in great danger of going extinct if conservation efforts weren’t put into place. Many areas of Borneo are under pressure from logging, mining, and palm oil plantations, which is leading to habitat loss all over the island.

Not only that, the more Boyce looked at the owl, the more he noticed differences from the Sumatran subspecies of Rajah scops owl. He suspected it might not be a subspecies but a completely separate species. That made it even more important to protect the owl and study it.

The owl’s rediscovery was announced in May 2021. Studies of the owl are ongoing but hopefully will soon result in more information about it and its habitat.

Next, let’s talk about a rodent, since Gracie likes to play with toy mice. This rediscovery came from Australia, where a study of extinct Australian rodents and their living relations found something surprising. It’s the opposite of the owl we just talked about, that might end up being a separate species of its own.

The mouse in question was once called Gould’s mouse. It used to be common throughout Australia, where it’s a native mammal, but it was declared extinct in 1990 after no one had seen it since the 1840s. Researchers suspected it had gone extinct after colonizers brought cats to Australia, although diseases and competition from introduced species of mice and rats also had a big impact.

Meanwhile, another native mouse, called the djoongari or Shark Bay mouse, was driven nearly to extinction. Fortunately, the djoongari survived on a few islands off western Australia. Conservation efforts in 2003 introduced it to more islands, where it spread and did well. It’s a social mouse that lives in family groups in a burrow it digs under bushes. It lines the burrow with dry grass to make it warmer and more comfortable.

The djoongari is a large mouse, up to 4.5 inches long not counting the tail, or 11.5 centimeters. The tail is a little longer than the head and body combined. It has long, shaggy fur that’s a mixture of dark and light brown with a paler belly and feet, and it has a tuft of dark fur at the end of its tail like a tiny lion.

In early 2021, the researchers studying native rodent DNA realized that the living djoongari and the extinct Gould’s mouse had the exact same genetic profile! They were the same animal! That means Gould’s mouse didn’t go extinct, although technically it didn’t exist in the first place.

That doesn’t mean the djoongari is perfectly safe, of course. Its range is still extremely restricted and it’s vulnerable to the same factors that nearly drove it to extinction in the first place. But at least it’s still around and can be protected.

We’ll finish with another mouse. In 1991, a volcano in the Philippines erupted. The volcano was called Mount Pinatubo on the island of Luzon, and the eruption was enormous. It was ten times stronger than the eruption of Mount St. Helens in 1980. Lava and ash filled valleys up to 600 feet deep, or 183 meters. More than 800 people died from the eruption itself and the devastation afterwards, during landslides caused by all the ash every time it rained.

In addition to the awful situation for people, animals were affected too. Most of the forests near the volcano were completely destroyed. Scientists thought the Pinatubo volcano mouse had probably gone extinct since it only lived on that one volcanic mountain, which had just blown up. Surveys of the area a few years after the eruption didn’t turn up signs of any of the mice.

The Pinatubo volcano mouse was only described in 1962 from a single specimen collected in 1956. It was a large mouse, almost the size of a rat, with long hind legs for jumping and climbing and a tail much longer than the length of its head and body together. It mostly ate earthworms and other small animals, but not a lot was known about it.

More than 20 years after the eruption, a team of scientists surveyed the animals living on the mountain. The conditions were difficult for the team to navigate, since there was still a lot of ash and erosion in the area that made the steep slopes unstable. The lush forests were gone, replaced by grass and bamboo, shrubs, a few trees, and other plants. They didn’t expect to find a lot of animals, although they thought they’d find introduced species of rats and mice that had moved into the disturbed areas from other parts of the island.

But to their surprise, they found 17 species of mammal on the mountain. Eight were bats, there were wild pigs and deer, and the rest were rodents. And the rodents were mostly native species, not introduced ones—including the Pinatubo volcano mouse!

Researchers theorize that a mouse that lives on an active volcano as its only habitat must have evolved to weather occasional eruptions. The mice were actually most numerous in the places that had been the most destroyed. The term for a species that thrives in environments that have seen widespread natural destruction is “disturbance specialist,” and that’s just what these mice are.

It just goes to show that no matter how bad things may be, there is life. And where there’s life, there’s hope. And probably mice.

Now, if you will excuse me, I have to go make a chocolate cake to take to the person who found Gracie.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 263: Pair Bonds

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

Thanks to Ella and Jack for this week’s topic suggestion, animals that mate for life or develop pair bonds! Happy Valentine’s Day!

Further reading:

Wisdom the albatross, now 70, hatches yet another chick

The prairie vole mates for life:

Swans mate for life:

The black vulture also mates for life:

The Laysan albatross:

Wisdom the Laysan albatross with her 2021 chick (pic from the link listed above). I hope I look that good at 70:

Dik-diks!

The dik-dik nose is somewhat prehensile:

The pileated gibbon (and other gibbons) forms pair bonds:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Last February Ella and her son Jack suggested a Valentine’s Day topic. I already had the February episodes finished last year, but this year Valentine’s Day falls on a Monday and that just seems too perfect to pass up. So thanks to Ella and Jack, we’re going to learn about some animals that are monogamous.

Valentine’s Day falls on February 14th and in many European cultures is a day celebrating love and romance. It also falls at the very beginning of spring in the northern hemisphere, when many animals start finding mates.

Different species of animal have different relationships. Some animals are social, some are solitary. Every species is different because every species has slightly different requirements for reproducing due to different habitats, foods, how much care the babies need, and so forth.

There are different types of monogamy among animals and it can get complicated, just as it’s often complicated in people, so I’m going to simplify it for this episode into two categories: animals that mate for life and animals that form pair bonds. Animals that mate for life, meaning the male and female seek each other out every mating season to have babies together, don’t necessarily spend all their time together outside of mating season. Animals in pair bonds spend a lot of their time together, but they don’t always exclusively mate with each other. But some animals do both.

For instance, the prairie vole. This is a little rodent that lives in dry grasslands in central North America, in parts of the United States and Canada. It’s about the size of a mouse with a short tail although it’s more chonky than a mouse, like a small dark brown hamster. It spends most of its time either in a shallow burrow it digs among grass roots or out finding the plant material and insects it eats by traveling through aboveground tunnels it makes through densely packed plant stems. It lives in colonies and is a social animal most of the time, and the male in particular is devoted to his mate. He’s so devoted that once he’s found a mate, he will even drive away other females who approach him.

The only time the prairie vole isn’t social is during mating season, which is usually twice a year, in fall and in spring. At that time, mated pairs leave the colony and find a small territory to have their babies. The pair spends almost all their time together, grooming each other, finding and sharing food, and building a nest for the babies. When the babies are born, both parents help care for them.

The male prairie vole mates for life. Most of the time “mating for life” means that if one of a pair dies, the other will then find a new mate. But for the male prairie vole, if his mate dies, he stays single for the rest of his life. He also shows behaviors that are similar to grief in humans. The female prairie vole is a little more practical and although she also grieves if her mate dies, she’ll eventually find another mate. Researchers who study prairie voles have discovered that the hormones found in mated pairs are the same as those in humans who are in love.

That’s so sweet, and I wish I didn’t have to talk about the voles dying. I think the opposite of love isn’t hate; the opposite of love is grief. It’s okay to be sad even for a long time when someone you love dies or moves far away, or if your own pair bond doesn’t work out. It’s also okay to find happy moments even when you’re grieving. Life is complicated. Also, just going to point out, devoted as they are to each other, sometimes a prairie vole will mate with someone besides their own mate.

One bird that’s famous for being monogamous is the swan. It mates for life and also forms pair bonds. These pair bonds form while the swans are still young, and the young couples basically just hang out together long before they’re old enough to have babies. It’s no wonder pictures of swans appear on so many wedding invitations and Valentine’s day cards. It helps that they’re beautiful birds too. The black vulture also mates for life but no one puts vultures on a wedding invitation. Also, swans sometimes split up and find new mates. Things don’t always work out with a pair bond, even for swans.

Another large, beautiful bird that mates for life is the albatross, but it doesn’t form a pair bond. Most of the time the albatross is solitary, traveling thousands of miles a year as it soars above the open ocean, looking for squid, small fish, and other food near the surface of the water. But once a year in some species, and once every two years in other species, albatrosses return to their nesting grounds and seek out their mate.

Albatrosses live a very long time so are really picky about who they choose as a mate. Once a pair forms, they develop a complicated, elegant dance to perform together. Each couple’s dance is unique, which helps them find each other in a crowded nesting colony when they haven’t seen each other in a couple of years.

The oldest wild bird in the world that we know of is a Laysan albatross named Wisdom. She was tagged by scientists in 1956 when she was at least five years old already, and as of 2021 she was still healthy and producing healthy chicks with her mate. Her leg tag has had to be replaced six times because she’s outlasting the material used to make the tags.

The Laysan albatross is a smaller species of albatross, with a wingspan of not quite 7 feet, or over two meters. Its body is mostly white, although its back is gray, with black and gray wings and a dark smudge across the eyes that looks very dramatic. It spends most of the time in the northern Pacific between the west coast of North America and the east coast of Asia, but it only nests on 16 tiny islands. Most of these are part of the Hawaiian islands with a few near Japan, but recently new breeding colonies have been spotted on islands off the coast of Mexico.

Wisdom the albatross is estimated to be at least 70 years old as of 2021 and she’s raised 30 to 36 chicks successfully. Because of her age, which is old even for an albatross, she may have outlived her first mate and taken another. She’s been with her current mate since at least 2012.

Albatrosses only lay one egg during nesting season. Both parents help incubate the egg and feed the baby when it hatches. It takes two or three months for the egg to hatch, depending on the species. Once the egg hatches, it’s at least another 5 or 6 months before the chick is old enough to leave the nest and care for itself, and in some species this is as much as 9 months. This means a big time and energy investment for both parents.

Albatrosses don’t reach sexual maturity until they’re at least five years old. Birds younger than this still join the breeding colony and practice their dance moves for when they’re old enough to choose a mate.

Pair bonding and mating for life are common in birds, rare in amphibians, reptiles, and fish, and surprisingly rare in mammals. One mammal that both mates for life and forms a pair bond is a tiny antelope called a dik-dik.

The dik-dik lives in parts of eastern and southern Africa and is barely bigger than a rabbit, which it somewhat resembles in shape. It stands less than 16 inches tall at the shoulder, or 40 cm, although its back and rump are arched and rounded and so are actually higher than the shoulder. Females are usually larger than males, while only males have horns. The horns arch back from the head but because the male has a tuft of long hair on the top of his head, and because the horns are only about 3 inches long at most, or 7.5 cm, they can be hard to see.

The dik-dik has an elongated snout that’s somewhat prehensile. It lives in hot areas without much water, so it gets most of its moisture from the plants it eats. Most of the time hot weather doesn’t bother it, but on exceptionally hot days it can cool down by panting through its long nose. Its nose is lined with blood vessels close to the surface and it has special nose muscles that allow it to pant quickly. Air moving over the blood vessels helps cool the blood.

Because pretty much everything eats the dik-dik, traveling long distances to find a mate is dangerous. Once the dik-dik finds a mate, they stay together for life in a small territory and spend most of their time together. Females give birth to one fawn twice a year, and the fawn no longer needs its parents at about 7 months old. Parents drive away their grown offspring, who leave to find a mate and territory of their own.

Humans, of course, strongly pair bond because we’re such intensely social creatures, and many people choose a partner and stay with them for life. Then again, we don’t always. Surprisingly, our closest living cousins, the great apes, are also very social, but they don’t typically form pair bonds and females may mate with different males.

The gibbon, which is a lesser ape instead of a great ape, does often form long-lasting pair bonds. We’ve talked about various species of gibbon in previous episodes. Gibbons are the apes that sing elaborate duets with their mates, with their children sometimes joining in as a chorus.

Here’s a pair of pileated gibbons singing together. The female is named Molly and was in a rehabilitation center after being injured, but she found a wild mate while she was recovering:

[gibbons singing]

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 262: Animals Discovered in 2021

It’s the second annual discoveries episode! Lots of animals new to science were described in 2021 so let’s find out about some of them.

Further reading:

First description of a new octopus species without using a scalpel

Marine Biologists Discover New Species of Octopus

Bleating or screaming? Two new, very loud, frog species described in eastern Australia

Meet the freaky fanged frog from the Philippines

New alpine moth solves a 180-year-old mystery

Meet the latest member of Hokie Nation, a newly discovered millipede that lives at Virginia Tech

Fourteen new species of shrew found on Indonesian island

New beautiful, dragon-like species of lizard discovered in the Tropical Andes

Newly discovered whale species—introducing Ramari’s beaked whale (Mesoplodon eueu)!

Scientists describe a new Himalayan snake species found via Instagram

The emperor dumbo octopus (deceased):

The star octopus:

New frog just dropped (that’s actually the robust bleating tree frog, already known):

The slender bleating tree frog:

The screaming tree frog:

The Mindoro fanged frog:

Some frogs do have lil bitty fangs:

The hidden Alpine moth, mystery solver:

The Hokie twisted-claw millipede:

One of 14 new species of shrew:

The snake picture that led to a discovery:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This episode marks our 5th year anniversary! I also finally got the ebook download codes sent to everyone who backed the Kickstarter at that level. The paperback and hardback books will hopefully be ready for me to order by the end of February and I can get them mailed out to backers as soon as humanly possible. Then I’ll focus on the audiobook! A few Kickstarter backers still haven’t responded to the survey, either with their mailing address for a physical book or for names and birthdays for the birthday shout-outs, so if that’s you, please get that information to me!

Anyway, happy birthday to Strange Animals Podcast and let’s learn about some animals new to science in 2021!

It’s easy to think that with all the animals already known, and all the people in the world, surely there aren’t very many new animals that haven’t been discovered yet. But the world is a really big place and parts of it, especially the oceans, have hardly been explored by scientists.

It can be confusing to talk about when an animal was discovered because there are multiple parts to a scientific discovery. The first part is actually finding an animal that the field scientists think might be new to science. Then they have to study the animal and compare it to known animals to determine whether it can be considered a new species or subspecies. Then they ultimately need to publish an official scientific description and give the new animal a scientific name. This process often takes years.

That’s what happened with the emperor dumbo octopus, which was first discovered in 2016. Only one individual was captured by a deep-sea rover and unfortunately it didn’t survive being brought to the surface. Instead of dissecting the body to study the internal organs, because it’s so rare, the research team decided to make a detailed 3D scan of the octopus’s body instead and see if that gave them enough information.

They approached a German medical center that specializes in brain and neurological issues, who agreed to make a scan of the octopus. It turned out that the scan was so detailed and clear that it actually worked better than dissection, plus it was non-invasive so the preserved octopus body is still intact and can be studied by other scientists. Not only that, the scan is available online for other scientists to study without them having to travel to Germany.

The emperor dumbo octopus grows around a foot long, or 30 cm, and has large fins on the sides of its mantle that look like elephant ears. There are 45 species of dumbo octopus known and obviously, more are still being discovered. They’re all deep-sea octopuses. This one was found near the sea floor almost 2.5 miles below the surface, or 4,000 meters. It was described in April of 2021 as Grimpoteuthis imperator.

Oh, and here’s a small correction from the octopus episode from a few years ago. When I was talking about different ways of pluralizing the word octopus, I mispronounced the word octopodes. It’s oc-TOP-uh-deez, not oc-tuh-podes.

Another octopus discovered in 2021 is called the star octopus that has a mantle length up to 7 inches long, or 18 cm. It lives off the southwestern coast of Australia in shallow water and is very common. It’s even caught by a local sustainable fishery. The problem is that it looks very similar to another common octopus, the gloomy octopus. The main difference is that the gloomy octopus is mostly gray or brown with rusty-red on its arms, while the star octopus is more of a yellowy-brown in color. Since individual octopuses show a lot of variation in coloration and pattern, no one noticed the difference until a recent genetic study of gloomy octopuses. The star octopus was described in November 2021 as Octopus djinda, where “djinda” is the word for star in the Nyoongar language of the area.

A study of the bleating tree frog in eastern Australia also led to a new discovery. The bleating tree frog is an incredibly loud little frog, but an analysis of sound recordings revealed that not all the calls were from the same type of frog. In fact, in addition to the bleating tree frog, there are two other really loud frog species in the same area. They look very similar but genetically they’re separate species. The two new species were described in November 2021 as the screaming tree frog and the slender bleating tree frog.

This is what the slender bleating tree frog sounds like:

[frog call]

This is what the screaming tree frog sounds like:

[another frog call]

Another newly discovered frog hiding in plain sight is the Mindoro fanged frog, found on Mindoro Island in the Philippines. It looks identical to the Acanth’s fanged frog on another island but its mating call is slightly different. That prompted scientists to use both acoustic tests of its calls and genetic tests of both frogs to determine that they are indeed separate species.

Lots of insects were discovered last year too. One of those, the hidden alpine moth, ended up solving a 180-year-old scientific mystery that no one even realized was a mystery.

The moth was actually discovered in the 1990s by researchers who were pretty sure it was a new species. It’s a diurnal moth, meaning it’s active during the day, and it lives throughout parts of the Alps. Its wingspan is up to 16mm and it’s mostly brown and silver.

Before they could describe it as a new species and give it a scientific name, the scientists had to make absolutely sure it hadn’t already been named. There are around 5,000 species of moth known to science that live in the Alps, many of them rare. The researchers narrowed it down finally to six little-known species, any one of which might turn out to be the same moth as the one they’d found.

Then they had to find specimens of those six species collected by earlier scientists, which meant hunting through the collections of different museums throughout Europe. Museums never have all their items on display at any given time. There’s always a lot of stuff in storage waiting for further study, and the larger a museum, the more stuff in storage it has. Finding one specific little moth can be difficult.

Finally, though, the scientists got all six of the other moth species together. When they sat down to examine and compare them to their new moth, they got a real surprise.

All six moths were actually the same species of moth, Dichrorampha alpestrana, described in 1843. They’d all been misidentified as new species and given new names over the last century and a half. But the new moth was different and at long last, in July 2021, it was named Dichrorampha velata. And those other six species were stricken from the record! Denied!

You don’t necessarily need to travel to remote places to find an animal new to science. A professor of taxonomy at Virginia Tech, a college in the eastern United States, turned over a rock by the campus’s duck pond and discovered a new species of millipede. It’s about three quarters of an inch long, or 2 cm, and is mostly a dark maroon in color. It’s called the Hokie twisted-claw millipede.

Meanwhile, on the other side of the world on the island of Sulawesi, a team of scientists discovered FOURTEEN different species of shrew, all described in one paper at the end of December 2021. Fourteen! It’s the largest number of new mammals described at the same time since 1931. The inventory of shrews living on Sulawesi took about a decade so it’s not like they found them all at once, but it was still confusing trying to figure out what animal belonged to a known species and what animal might belong to a new species. Sulawesi already had 7 known species of shrew and now it has 21 in all.

Shrews are small mammals that mostly eat insects and are most closely related to moles and hedgehogs. Once you add the 14 new species, there are 461 known species of shrew living in the world, and odds are good there are more just waiting to be discovered. Probably not on Sulawesi, though. I think they got them all this time.

In South America, researchers in central Peru found a new species of wood lizard that they were finally able to describe in September 2021 after extensive field studies. It’s called the Feiruz wood lizard and it lives in the tropical Andes in forested areas near the Huallaga River. It’s related to iguanas and has a spiny crest down its neck and the upper part of its back. The females are usually a soft brown or green but males are brighter and vary in color from green to orangey-brown to gray, and males also have spots on their sides.

The Feiruz wood lizard’s habitat is fragmented and increasingly threatened by development, although some of the lizards do live in a national park. Researchers have also found a lot of other animals and plants new to science in the area, so hopefully it can be protected soon.

So far, all the animals we’ve talked about have been small. What about big animals? Well, in October 2021 a new whale was described. Is that big enough for you? It’s not even the same new whale we talked about in last year’s discoveries episode.

The new whale is called Mesoplodon eueu, or Ramari’s beaked whale. It’s been known about for a while but scientists thought it was a population of True’s beaked whale that lives in the Indian Ocean instead of the Atlantic.

When a dead whale washed ashore on the South Island of New Zealand in 2011, it was initially identified as a True’s beaked whale. A Mātauranga Māori whale expert named Ramari Stewart wasn’t so sure, though. She thought it looked different than a True’s beaked whale. She got together with marine biologist Emma Carroll to study the whale and compare it to True’s beaked whale, which took a while since we don’t actually know very much about True’s beaked whale either.

The end result, though, is that the new whale is indeed a new species. It grows around 18 feet long, or 5.5 meters, and probably lives in the open ocean where it dives deeply to find food.

We could go on and on because so many animals were discovered last year, but let’s finish with a fun one from India. In June of 2020, a graduate student named Virender Bhardwaj was stuck at home during lockdowns. He was able to go on walks, so he took pictures of interesting things he saw and posted them online. One day he posted a picture of a common local snake called the kukri snake.

A herpetologist at India’s National Centre for Biological Sciences noticed the picture and immediately suspected it wasn’t a known species of kukri snake. He contacted Bhardwaj to see where he’d found the snake, and by the end of the month Bhardwaj had managed to catch two of them. Genetic analysis was delayed because of the lockdowns, but they described it in December of 2021 as the Churah Valley kukri snake.

The new snake is stripey and grows over a foot long, or 30 cm. It probably mostly eats eggs.

It just goes to show, no matter where you live, you might be the one to find a new species of animal. Learn all you can about your local animals so that if you see one that doesn’t quite match what you expect, you can take pictures and contact an expert. Maybe next year I’ll be talking about your discovery.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 260: Danger! Newts!

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

Thanks to Enzo for suggesting this week’s topic, newts from least dangerous to most dangerous!

Further reading:

One snake’s prey is another’s poison

The Corsican brook salamander is not toxic (photo by Paola Mazzei, from iNaturalist):

The smooth newt is a little bit toxic (photo by Fred Holmes and taken from this site) – this is a male during breeding season:

The Hong Kong warty newt has an orange-spotted belly and is toxic:

The chonky Spanish ribbed newt will stab you with its own toxin-covered bones (photo by Eduardo José Rodríguez Rodríguez, taken from this site):

Yeah maybe don’t touch the Japanese fire belly newt if you don’t need to:

Warning! Do not eat the California newt:

The safest newt to handle is this toy newt. I really want one:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week’s topic is a suggestion from Enzo, who wants to learn about newts “from least dangerous to most dangerous.” There are at least 60 species of newt known with more being discovered every year, but I’ll do my best to hit the highlights.

A newt is a type of salamander, specifically a semi-aquatic salamander in the subfamily Pleurodelinae. All newts are salamanders but not all salamanders are newts. Newts live throughout much of the northern hemisphere, including northern Africa and the Middle East, Eurasia, and North America.

Female newts lay their eggs in freshwater, usually attaching them to vegetation or in little crevices in rocks. A few weeks later, the eggs hatch into larvae with external gills. The larvae are called tadpoles like frog larvae, and they mostly eat algae and tiny insects. They metamorphose over several months just like frogs do when they develop from tadpoles, but where frogs develop their hind legs first, newt tadpoles develop front legs first. The newt tadpole finally absorbs its gills and grows lungs instead, at which point it emerges from the water as an immature newt called an eft. Efts are juvenile newts and live exclusively on land, although like other amphibians they have to keep their skin damp so you’ll usually find them in leaf litter and under rotting logs. Efts that live in North America return to the water when they become full adults, but most newts in other parts of the world stay on land the rest of their lives except during breeding season. Efts and adult newts eat worms, insects and insect larvae, slugs, frog tadpoles, and any other small animals they can catch.

The Corsican brook salamander is a type of newt that lives on the island of Corsica in the Mediterranean Sea. It grows about five inches long at most, or 13 cm, and is brown or olive-green, sometimes with a mottled pattern of orange or red on its back. It’s an exception to the rule that newts outside of North America usually live their adult lives on land. Not only does the Corsican brook salamander live in freshwater most of the time as an adult, it doesn’t even have working lungs. It spends most of its time in fast-moving streams and rivers in higher elevations, where it absorbs oxygen from the water through its skin.

As Enzo undoubtedly knows, many newts produce toxins. This is why it’s not a good idea to handle a newt, or any other amphibian for that matter, unless you’re absolutely certain it’s a species that’s not toxic. In most cases, a newt’s toxin won’t hurt you if it just touches your skin, but if it gets in a cut or if you have some of the toxin on your finger and then rub your eye or put your finger in your mouth, the toxin can make you really sick. Some newts are even deadly.

The Corsican brook salamander we just talked about is not toxic, so we’ll call it the least dangerous newt. The smooth newt, on the other hand, produces a relatively mild toxin. You’d have to actually eat a bunch of smooth newts to get sick from its toxins, and why are you eating newts at all? Stop that immediately and have a banana instead.

The smooth newt lives throughout much of Europe and parts of Asia. It grows just over 4 inches long, or 11 cm, and most of the time it’s brown with darker spots. The male also has a bright orange stripe on his belly. During breeding season, though, the male develops a wavy crest down his spine and brighter colors. Both males and females move into the water during breeding season, so both males and females develop tail fins on the top and bottom of their tails to help them swim.

The males of many newt species develop brighter colors and crests during breeding season to attract females. In the case of the Hong Kong warty newt, in breeding season the male develops a white stripe on his tail. He attracts the attention of females by wagging his tail in the water, where the white stripe shows up well even in dim light. The Hong Kong warty newt lives in Hong Kong and grows up to 6 inches long, or 15 cm. It’s brown with orange patches on its belly and its skin appears bumpy like the skin of an orange. If it feels threatened, it sometimes rolls onto its back and pretends to be dead, which not only may deter some predators, it shows off the bright orange markings on its belly. This signals to a potential predator that this newt is toxic, and another thing it does when it plays dead is secrete toxins from its skin. In other words, don’t bite this newt or touch it. It’s also a protected species in Hong Kong so you shouldn’t be trying to eat it anyway. Its eggs are toxic too.

Some newts deliver their toxins to potential predators in a way you might not expect. If an animal tries to bite the Spanish ribbed newt, it secretes toxins from special glands on its sides and then pushes the sharp points of its own ribs out through the tubercles where the poison glands are located. The pointed ribs become coated with toxins as they emerge and are sharp enough to stab a predator right in the mouth. The toxin causes severe pain when injected and can even cause death in small animals. The newt itself isn’t injured by this process, which it can do repeatedly whenever it needs to. Newts, like all amphibians, heal extremely quickly.

The Spanish ribbed newt lives in the southern Iberian Peninsula in Europe and Morocco in northern Africa. It’s larger than the newts we’ve talked about so far, growing up to a foot long, or 30 cm. It’s dark gray with rusty-red or orange spots on its sides, one spot per poison gland. It actually spends most of its adult life in the water and especially likes deep, quiet ponds and wells.

Finally, we’ve reached the most dangerous newt in the world. I’m nominating two newts for this honor because they both secrete the neurotoxin tetrodotoxin, which we’ve talked about before. It’s the same kind of toxin found in pufferfish and some frogs. The toxin can irritate your skin even if you only touch it, and if a little of the toxin gets into a scratch or cut, it can cause numbness, shortness of breath, and dizziness. If you accidentally swallow any of the toxin, you can die within six hours. There’s no antidote.

Our two most dangerous newts are the Japanese fire belly newt and the California newt. The Japanese fire belly newt grows about 5.5 inches long, or 14 cm, and lives in parts of Japan in ponds, lakes, and ditches. It has pebbly skin and is brown or black with red speckles, but its belly is bright orange or red. The California newt has slightly bumpy gray or gray-brown skin on its back but a bright orange or yellow belly. It can grow up to 8 inches long, or 20 cm. It lives in parts of California, especially near the coast and in the southern Sierra Nevada Mountains.

The reason the California newt has such a potent toxin is that its main predator, the common garter snake, has a great resistance to the toxin. Only the most toxic newts are more likely to survive if a garter snake grabs it, and only the most resistant snakes are more likely to survive eating it. It’s a predator-prey arms race that’s been going on for at least 40 million years, resulting in a newt that is boss fight level toxic to most predators but just barely ahead of the game when it comes to garter snakes. It’s likely that something similar has occurred with the Japanese fire belly newt.

If you live in the areas where these toxic newts also live, be especially careful with your pets. Keep your dog on a leash so you can be sure it doesn’t try to bite or play with one of these newts. Some people actually keep the Japanese fire belly newt as a pet, but obviously if you do this you need to be extremely careful, especially if you have pets or small children. Maybe you should get a toy newt instead.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 259: Indestructible Animals

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

Thanks to Nicholas and Emma for their suggestions this week as we learn about some (nearly) indestructible animals!

Further listening:

Patreon episode about Metal Animals (unlocked, no login required)

Further reading:

Even a car can’t kill this beetle. Here’s why

The scaly-foot snail’s shell is made of actual iron – and it’s magnetic

The scaly-foot gastropod (pictures from article linked above):

The diabolical ironclad beetle is virtually unsquishable:

Limpet shells:

The business side of a limpet:

Highly magnified limpet teeth:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about some indestructible animals, or at least animals that are incredibly tough. You may be surprised to learn that they’re all invertebrates. It’s a suggestion by Nicholas, and one of the animals Nicholas suggested was also suggested by Emma.

We’ll start with that one, the scaly-foot gastropod, a deep-sea snail. We actually covered this one a few years ago but only in a Patreon episode. I went ahead and unlocked that episode so that anyone can listen to it, since I haven’t done that in a while, so the first part of this episode will sound familiar if you just listened to that one.

The scaly-foot gastropod lives around three hydrothermal vents in the Indian Ocean, about 1 ¾ miles below the surface, or about 2,800 meters. The water around these vents, referred to as black smokers, can be more than 350 degrees Celsius. That’s 660 degrees F, if you even need to know that that’s too hot to live.

The scaly-foot gastropod was discovered in 2001 but not formally described until 2015. The color of its shell varies from almost black to golden to white, depending on which population it’s from, and it grows to almost 2 inches long, or nearly 5 cm. It doesn’t have eyes, and while it does have a small mouth, it doesn’t use it for eating. Instead, the snail contains symbiotic bacteria in a gland in its esophagus. The bacteria convert toxic hydrogen sulfide from the water around the hydrothermal vents into energy the snail uses to live. It’s a process called chemosynthesis. In return, the bacteria get a safe place to live.

The snail’s shell contains an outer layer made of iron sulfides. Not only that, the bottom of the snail’s foot is covered with sclerites, or spiky scales, that are also mineralized with iron sulfides. While the snail can’t pull itself entirely into its shell, if something attacks it, the bottom of its foot is heavily armored and its shell is similarly tough.

Researchers are studying the scaly-foot gastropod’s shell to possibly make a similar composite material for protective gear and other items. The inner layer of the shell is made of a type of calcium carbonate, common in mollusk shells and some corals. The middle layer of the shell is regular snail shell material, organic periostracum, [perry-OSS-trickum] which helps dissipate heat as well as pressure from squeezing attacks, like from crab claws. And the outer layer, of course, is iron sulfides like pyrite and greigite. Oh, and since greigite is magnetic, the snails stick to magnets.

Unfortunately, the scaly-foot gastropod is endangered due to deep-sea mining around its small, fragile habitat. Hopefully conservationists can get laws passed to protect the thermal vents and all the animals that live around them.

The scaly-foot gastropod is the only animal known that incorporates iron sulfide into its skeleton or exoskeleton, although our next indestructible animal, the diabolical ironclad beetle, has iron in its name.

The diabolical ironclad beetle lives in western North America, especially in dry areas. It grows up to an inch long, or 25 mm, and is a dull black or dark gray in color with bumps and ridges that make it look like a piece of tree bark. Since it lives on trees, that’s not a coincidence. It spends most of its time eating fungus that grows on and under tree bark.

Like a lot of beetles, it’s flattened in shape. This helps it slide under tree bark and helps it keep a low profile to avoid predators like birds and lizards. But if a predator does grab it and try to crunch it up to eat, the diabolical ironclad beetle is un-crunchable. Its exoskeleton is so tough that it can withstand being run over by a car. When researchers want to mount a dead beetle to display, they can’t just stick a pin through the exoskeleton. It bends pins, even strong steel ones. They have to get a tiny drill to make a hole in the exoskeleton first.

The beetle’s exoskeleton is so strong because of the way it’s constructed. In a late 2020 article in Nature, a team studying the beetle discovered that the exoskeleton is made up of multiple layers that fit together like a jigsaw puzzle. Each layer contains twisted fibers made of proteins that help distribute weight evenly across the beetle’s body and stop potential cracking. At the same time, the arrangement of the exoskeleton’s sections allows for enough give to make it just flexible enough to keep from cracking under extreme pressure. Of course, this means the beetle can’t fly because its wing covers can’t move, but if it falls from a tree it doesn’t need to worry about hurting itself.

Engineers are studying the beetle to see if they can adapt the same type of structures to make airplanes and cars safer.

Nicholas also suggested the limpet, another mollusk. It’s a type of snail but it doesn’t look like the scaly-foot gastropod or like most other snails. Its shell is shaped like a little cone with ridges that run from the cone’s tip to the bottom, sort of like a tiny ice-cream cone that you don’t want to eat. There are lots of species and while a few live in fresh water, most live in the ocean. The limpets we’re talking about today are those in the family Patellidae.

If you think about a typical snail, whose body is mostly protected by a shell and who moves around on a wide flat part of its body called a foot, you’ll understand how the limpet is a snail even though it looks so different superficially. The conical shell protects the body, and the limpet does indeed move around on a so-called foot, gliding along very slowly on a thin layer of mucus.

The limpet lives on rocks in the intertidal zone and is famous for being able to stick to a rock incredibly tightly. It has to be able to do so because otherwise it would get washed off its rock by waves, plus it needs to be safe when the tide is out and its rock is above water. The limpet makes a little dimple in the rock that exactly matches its shell, called a home scar, and as the tide goes out the limpet returns to its home scar, seals the edges of its shell tight to the rock, and waits for the water to return. It traps water inside its shell so its gills won’t dry out while it waits. If the rock is too hard for it to grind down to match its shell, it grinds the edges of its shell to match the rock. It makes its home scar by rubbing its shell against one spot in the rock until both are perfectly matched.

The limpet mostly eats algae. It has a tiny mouth above its foot and in the mouth is a teensy tongue-like structure called a radula, which is studded with very hard teeth. It uses the radula to rasp algae off of the rocks. Other snails do this too, but the limpet has much harder teeth than other snails. Much, much harder teeth. In fact, the teeth of some limpet species may be the hardest natural material ever studied.

The teeth are mostly chitin, a hard material that’s common in invertebrates, but the surface is coated with goethite [GO-thite] nanofibers. Goethite is a type of of iron, so while the limpet does have iron teeth, it still doesn’t topple the scaly-foot gastropod as the only animal known with iron in its skeleton. Not only does the goethite help make the teeth incredibly strong, which is good for an animal that is scraping those teeth over rocks constantly, the dense chitin fibers in the teeth make them resistant to cracking.

The limpet replaces its teeth all the time. They grow on a sort of conveyer belt and move forward until the teeth in front, at the business end of the radula, are ready to use. It takes about two days for a new tooth to fully form and move to the end of the radula, where it’s quickly worn down and drops off.

Meanwhile, even though the limpet’s shell doesn’t contain any iron, its shape and the limpet’s strong foot muscles mean that once a limpet is stuck to its rock, it’s incredibly hard to remove it. It just sits there being more or less impervious to predation. Humans eat them, although they have to be cooked thoroughly because they’re tough otherwise, naturally.

Finally, one animal that Nicholas suggested is probably the royalty of indestructible animals, the water bear or tardigrade. Because we talked about it recently, in episode 234, I won’t go over it again. I’ll just leave you with an interesting note that I missed when researching that episode.

In April of 2019, an Israeli spacecraft was launched that had dormant tardigrades onboard as part of an experiment about tardigrades in space. There were no people onboard, fortunately, because the craft actually crashed on the moon instead of landing properly. The ship was destroyed but the case where the tardigrades were stored appears to be intact.

It’s not exactly easy to run up to the moon and check on the tardigrades, so we don’t know if they survived the crash landing. Studies since then suggest they probably didn’t, but until we can actually land on the moon and send a rover or an astronaut out to check, we don’t know for sure. Tardigrades can survive incredibly cold, dry conditions while dormant. It’s not exactly the experiment researchers intended, but it’s definitely an interesting one.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes. There are links in the show notes to join our mailing list and to our merch store.

Thanks for listening!

Episode 258: Sable and Sable Antelope

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

A big birthday shout-out to Penelope this week! Thanks to Isaac for this week’s topic suggestion. We’re learning all about the sable and sable antelope!

Further reading (mostly for the pictures since there’s not much content otherwise):

Woman Rescues This Sable from Becoming Someone’s Coat

Further watching:

Kruger Park, Season 15 – this one is about some sable antelope bulls fighting

Fuzzy sable face:

Sable:

Sable antelopes:

A sable antelope growth chart. I find this really interesting. NERD:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’ve got an interesting theme, with both the theme and the animals suggested by Isaac. But first, we have a birthday shout-out!

Happy birthday this week to Penelope, whose birthday is on January 15th! I hope you have the best birthday ever!

Isaac suggested the sable, which is a type of mustelid, or weasel and ferret relation, and also suggested the sable antelope! It’s the sable episode.

The word sable means black or a rich dark brown, but most of the time it’s used to refer to the fur of an animal called the sable. The fur was so highly prized in Europe and Asia that the color of the animal’s fur was used as the name of the animal itself, and has been borrowed to refer to a specific coloration of other animals like cats and dogs.

The animal called the sable is common throughout parts of Asia, especially Siberia, China, and northern Mongolia. It lives in forests and mostly hunts by sound, and will eat just about anything it can find. This includes small animals like hares, rodents, birds, and even other species of mustelid, but it will also eat carrion, berries, fish, insects, snails and slugs, and occasionally it will even manage to kill a small bovid called a musk deer. The musk deer isn’t actually a deer but is more closely related to goats and antelopes. It can stand over two feet tall at the shoulder, or 70 cm, and the male has fang-like tusks instead of antlers or horns.

For an animal that sometimes kills and eats musk deer, the sable isn’t very big. It’s long and slender like other mustelids and measures nearly 2 feet long, or 56 cm, not counting its tail, which can add another 5 inches, or 12 cm. Females are a little smaller. It’s brown all over, usually dark brown but sometimes lighter depending on where it lives, with a pale patch on its throat. It has large fox-like ears and a somewhat fox-like or cat-like face but with smaller eyes. Its legs are short but that doesn’t stop it from covering long distances every day to find enough food, more than seven miles in some cases, or 12 km.

The sable is crepuscular, meaning it’s most active during dawn and dusk. When it’s not out hunting, it sleeps in a burrow it digs among tree roots, often lined with leaves and dry grass so it’s more comfortable and warmer. The exception is during mating season when the sable is more likely to be out during the daytime. Males fight each other during this time, and when a female is deciding whether she likes a male, she and the male will play-fight and chase each other.

One unusual thing about the sable is that even though mating season is usually in summertime, and even though it only takes about a month for the babies to develop inside the mother before they’re born, the babies are born in spring. Since the sable doesn’t have access to a time machine, something else is going on.

It’s called delayed implantation or embryonic diapause, where the mother’s egg is fertilized but then stays dormant for a time before it attaches to the uterine wall and starts developing into an embryo and ultimately a baby ready to be born. This allows babies to be born at a time of year when there’s plenty of food. In the sable’s case, the fertilized eggs don’t implant for 8 months.

Sables aren’t the only mammals that practice delayed implantation. A lot of mustelids do, as well as bears, seals, armadillos, and many others. A slightly different variety of delayed implantation only happens when the mother already has a baby that’s nursing, meaning she’s still producing milk. That’s hard on the body, so in some mammals, including some rodents and marsupials, the fertilized egg waits to implant until the mother is no longer producing milk. That way the mother has more resources available to nourish the growing embryo instead of having to divide her energy between her developing embryos and her already-born babies. In other mammals, including humans, a nursing mother doesn’t usually produce eggs to be fertilized until she’s stopped producing milk for her baby.

A female sable usually has two or three babies in a litter but sometimes more. The babies are born with a little bit of fuzzy hair to help keep them warm, but like puppies and kittens they’re born with their eyes sealed shut. It takes about a month for their eyes to open. The mother weans them when they’re about two months old but continues to take care of them, first by regurgitating food for them to eat, then by teaching them how to hunt and forage for themselves.

The sable’s fur is exceptionally soft and beautiful, and as a result it’s been killed for its fur for centuries and has always been expensive to buy. One Russian population is jet black with a white tip to each hair, which was even more highly prized than the rest. But the best way to experience the beautiful fur of a sable is by petting a live one, not the skin of a dead one. Some people have started keeping sables as pets, although they’re not actually domesticated and can be difficult or even dangerous to keep.

Next, another beautiful non-domesticated animal is the sable antelope. It lives in forested savannas in parts of eastern and southern Africa. There are four subspecies, the largest of which is the giant sable antelope. That makes it sound enormous but it’s only a little bigger than other subspecies, and is critically endangered. In fact, the giant sable antelope was suspected of having gone extinct during a terrible civil war in Angola, which is the only place in Africa where it lives. Fortunately a herd of them was caught on camera trap in 2004, and the giant sable antelope is now protected.

Sable antelope cows give birth to one baby during the rainy season, which varies depending on where they live. The calves are light brown or pale reddish-brown but as they grow older, their fur becomes darker. Mature females are usually dark brown but adult males are black. Adults and older calves also have white patches on the face, belly, and rump.

The sable antelope has a short tail with a little tuft at the end, and it also has a short mane that usually stands upright like a donkey’s mane. Males are bigger than females, standing some 4 and a half feet tall at the shoulder, or 1.4 meters.

Both males and females have horns, though. Antelopes are bovids, which means they have true horns like cattle and goats, not antlers like deer that are shed every year. The sable antelope’s horns are really impressive, too. They’re dark gray or black and arch up and back from the head like really big goat horns. A female can have horns up to 3 and a half feet long, or 102 cm, while a male can have horns 0ver 5 feet long, or 165 cm. That’s right, his horns can be longer than he is tall. Sable antelopes are so spectacular that when you think of an antelope, you probably think of an animal that has horns like this.

Unfortunately, those horns have caused the sable antelope to be a target for big game hunters who want the horns as a trophy. These days, though, the biggest threat is habitat loss as humans fence their grasslands to graze livestock.

During the rainy season, the sable antelope lives in small herds of up to 30 females and their young, who share a territory with a single bull. The herd is led by the oldest females who know where the best places are to graze and find water. When the herd moves, the male usually follows right behind to make sure everyone stays together.

The sable antelope eats tree leaves and some kinds of grass, and spends the hottest parts of the day lying down and chewing its cud because, like other bovids, it’s a ruminant. The calves are always in the middle of the resting herd and the adults lie facing outward so they can watch for danger and meet it with their horns. When the adults are moving around to graze, young calves stay in a group called a creche, watched over by a few adults.

During the dry season when there’s not as much to eat, herds will come together to graze in the best pastures with access to water. When young males mature, the older male drives them away from the herd to fend for themselves. Young bulls often form small bachelor herds or may be solitary.

When a bull challenges another bull in an attempt to take control of his territory, they fight with their horns, although they don’t usually injure each other. The sable antelope also uses its horns to fight off and sometimes even kill predators like lions and leopards.

This is the only reliable audio I could find of a sable antelope. There’s a link to the original video in the show notes. The sound is of a bull who’s stuck in the mud, although he later manages to get out.

[sable antelope sound]

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 254: The Saola and the Striped Bunny

Thanks to Elaine for suggesting the saola this week!

Further reading:

The saola: rushing to save the most ‘spectacular zoological discovery’ of the 20th century

Striped rabbit revealed in Laos forest

Saola horns:

A saola from a 1999 camera trap (photo taken from link above):

A female saola (named Martha) who unfortunately only survived in captivity a few weeks (photo taken from link above):

A striped bunny!! The Annamite striped rabbit:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week’s topic is a remarkable hoofed animal suggested last year by Elaine, the saola, and another remarkable animal I learned about while researching the saola. Both animals are newly discovered by science.

The scientific story of the saola starts in May of 1992. The Southeast Asian country of Vietnam had established a new nature reserve a few years before and wanted to learn more about the kinds of animals and plants living there. A team of scientists surveyed the area and one of the things they found was a skull with horns they didn’t recognize. The horns were long and straight and very close together.

They knew the skull came from an animal new to science, so they tried to find one to see what it looked like alive. But they couldn’t find one. It wasn’t until 1998 that a scientist saw a live saola, a female captured by hunters and kept in captivity until it died a few weeks later.

The saola is an antelope-like bovid that looks a lot like an oryx. We talked about the Arabian oryx in episode 218 and there are other species of oryx that live in parts of Africa. Oryx have long, straight horns that grow side by side too. But genetic analysis of saola remains indicates that the saola is much more closely related to cattle than to oryxes. The saola was described formally in 1993 and placed in its own genus, Pseudoryx, meaning false oryx.

The saola stands about 3 feet tall at the shoulder, or 92 centimeters, and is mostly chocolate brown with white markings on the head and a black stripe down its spine. Both males and females have horns, although males grow longer horns. The horns grow side by side, usually only a few inches apart, or about 8 or 9 centimeters, and are dark brown or black. They grow up to about 20 inches long, or 50 centimeters, and are often about the same distance apart at their tips as they are at the base of the skull. People sometimes call the saola the Asian unicorn because it’s so rare and its horns look sort of like unicorn horns, although they grow back from the skull instead of forward and aren’t spiral shaped. So, not actually very much like unicorn horns.

The saola also has a short tail, slender legs, and a short muzzle, but its tongue is over 6 inches long, or 15 centimeters. It’s rough like a cat’s tongue and it uses it to groom itself, just like a cat, and to help it gather the plants it eats, unlike a cat. It lives in forested mountains and migrates to lower elevations in winter, although its fur is thick and soft to keep it warm in higher elevations. It also has special pores around its eyes that secrete a special fluid it uses to mark plants and rocks the way many antelopes do. Because the saola hasn’t been observed in the wild, we don’t know if it’s marking its territory or just letting other saola know where it is.

The saola is critically endangered, mostly due to poaching. A team of forest guards patrols the park looking for traps that hunters set. Poachers often hunt animals in the park not because the hunters are hungry but because they can make a lot of money selling exotic animals to other countries as so-called medicine. The saola isn’t considered to have any medicinal uses, though, so while a hunter will sometimes kill one to eat, mostly it just gets caught in traps set for other animals. Since it’s so rare to start with, every saola killed in this way could ultimately cause the entire species to go extinct.

Conservationists are working hard to help the saola and its habitat. Logging has been banned in the park and the forest guards are on the lookout for illegal logging activity too. The forestry service is working to educate the local people that the saola only lives in their mountains and nowhere else in the world, which is something for them to be proud of. The park is near the border of another country, Laos, which is also helping with conservation efforts since the saola probably lives there too. You won’t find a saola in any zoos, though, because it doesn’t do well in captivity.

Other animals new to science have been discovered in the park and nearby areas, specifically around the Annamite Mountains along the border of Vietnam and Laos. This includes a new species of rabbit.

In 1996 a biologist named Rob Timmins was looking through a market in Laos when he saw three dead rabbits for sale as food. But these rabbits didn’t resemble any rabbits known from the area. They had short ears, reddish rumps, and dark brown stripes. Stripy rabbits! There is a similar-looking species that lives a thousand miles away, or 1,600 kilometers, in the mountains of Sumatra and Indonesia. The Sumatran striped rabbit is brown with darker brown stripes and blotches, but it’s been known to science since 1880. Timmins was the first scientist to see the Laotian rabbits.

Timmins bought the rabbits, of course, so they could be studied. Genetic studies determined that the rabbits are a distinct species, although it’s closely related to the Sumatran striped rabbit. It was described as a new species in 2000 and camera traps have since taken pictures of it in Vietnam, but we still know very little about it and its cousin in Sumatra.

Both species of striped rabbit are threatened by hunting and habitat loss. Hopefully they can be protected, along with their mountain homes, and a captive breeding program started to ensure their survival. Also, I would like one as a pet.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!