Episode 239: Mystery Crocodiles

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

Thanks to Pranav and Max for their suggestions. Let’s learn about some mystery crocodiles (and crocodile mysteries) this week!

Further reading:

Huge prehistoric croc ‘river boss’ prowled waterways

Extinct “horned” crocodile’s ancestry revealed

New species of crocodile discovered in museum collections

Rediscovery of “Lost” Caiman Leads to New Crocodilian Mystery

The Orange Cave-Dwelling Crocodiles

The horned crocodile’s fossil skull:

A baby Apaporis River caiman, looking fierce but cute (picture from link above):

An orange crocodile (later released, picture from link above):

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. We’ve got a crocodile episode this week you can really sink your teeth into. Thanks to Pranav and Max for their suggestions! (Yes, I do have a cold but hopefully I don’t sound too bad. I got a covid test today to make sure it’s just a cold, and it’s just a cold.)

We talked about crododilians in episode 85, so if you want to learn more about the saltwater crocodile or how to tell the American crocodile from the American alligator and so forth, that’s the episode to listen to. This episode is going to talk about mystery crocodiles!

The partial skull of a massive extinct crocodilian discovered in Queensland, Australia over a century ago was finally described in June of 2021. All we have is the partial skull from an animal that lived between 2 and 5 million years ago, but researchers can estimate the size of the whole animal by comparing the dimensions of its skull with its closest living relation. That happens to be an animal called the false gharial that lives on a few islands in South Asia, including Java and Sumatra. It’s the only living member of the subfamily Tomistominae, which used to be common worldwide. The false gharial can grow as long as 16 feet, or 5 meters, but its extinct Australian cousin was much bigger. The new species, Gunggamarandu maunala, may have grown up to 23 feet long, or 7 meters.

A smaller extinct crocodile, called the horned crocodile, lived in Madagascar until only about 1,400 years ago. It grew a little over 16 feet long, or 5 meters. It had two projections at the back of its head that look like horns, although they weren’t actually horns and probably weren’t all that big or noticeable when the crocodile was alive.

Like Gunggamarandu, the horned crocodile’s fossils were discovered almost 150 years ago but only definitively described in 2021. In this case, though, the delay was because no one could decide where the horned crocodile belonged in the crocodilian family tree. The Nile crocodile lives on Madagascar now, and some researchers assumed that the horned crocodile was either a close relation of the Nile croc or its ancestor. Since new evidence points to the Nile crocodile being a fairly recent arrival to the island, that’s not likely, so researchers analyzed the fossil remains and reclassified the horned croc as a member of the dwarf crocodiles in 2007. Finally, though, a research team analyzed the horned croc’s DNA and determined that it belongs in its own genus and is most closely related to the ancestral species of all living crocodiles. This suggests that crocodiles evolved in Africa and spread throughout the world from there.

Researchers aren’t sure what caused the horned croc to go extinct, but it may have been a combination of factors, including a drying climate on Madagascar, the arrival of humans, and the arrival of the Nile crocodile.

Speaking of the Nile crocodile and DNA, a 2011 genetic study of the Nile crocodile resulted in a surprising discovery. The study tested not just DNA samples gathered from 123 living Nile crocodiles but from 57 crocodiles mummified in ancient Egypt. The goal was to see if there were differences between modern crocodiles and ones that lived several thousand years ago, and to determine whether maybe there was a subspecies of Nile crocodile that hadn’t been recognized by science. Instead, they discovered that what was previously known as the Nile crocodile is actually two completely different species!

The Nile croc lives in Africa and is a large, aggressive animal that can grow just over 19 feet long, or almost 6 meters. The West African croc also lives in Africa and is a smaller, less aggressive animal that can grow up to 13 feet long, or 4 meters. Since crocodiles of all species show a lot of variation in size and appearance, no one realized until 2011 that there were two species living near each other. They’re not even all that closely related.

After the finding was published, zoos across the world tested their crocodiles and discovered that a lot of their Nile crocs are actually West African crocs.

Something similar happened more recently, in 2019, when a team of scientists did a genetic study of the New Guinea crocodile. They gathered DNA from 51 museum specimens from 7 different museums, and compared them to living New Guinea crocodiles. They were hoping to determine if there are actually two species of crocodile living in different parts of New Guinea, which had been suspected for a while. It turns out that yes, there are two separate species! Knowing exactly what kinds of animals live in a particular environment helps conservationists protect them properly.

In 1952 a subspecies of the spectacled caiman was discovered by science, called the Apaporis River caiman. It lives in Colombia, South America and is relatively small as crocs go, maybe 8 feet long at most, or 2.5 meters. After that, though, it wasn’t seen again. This was partly due to how remote and hard to navigate its habitat is, and partly due to a dangerous political situation, with rebel forces occupying the jungle where the crocodiles live. A peace treaty signed in 2016 made it safe for scientists to travel to that area at last, and a Colombian biologist named Sergio Balaguera-Reina visited with various indigenous tribes of the area to ask about the Apaporis caiman and learn everything they knew about it.

At night, he and two local people paddled upriver in a canoe and searched for the caimans—and he found lots of them. He caught as many as he could to take DNA samples before releasing them again. When he got home, he tested the DNA and made a surprising discovery. Even though the Apaporis caimans look very different from another subspecies of spectacled caiman found in other parts of South America, their DNA is quite similar. That means the differences, especially the Apaporis caiman’s much narrower snout, are due to selective pressures in its environment. Balaguera-Reina is working on figuring out the causes of the Apaporis caiman’s physical differences.

The Siamese crocodile was once common throughout South Asia, but habitat loss has had a major impact on the species and for a long time it was thought to be extinct in the wild. It grows up to 13 feet long at most, or 4 meters, and is not very aggressive. It’s kept in captivity in crocodile farms, where it’s bred and killed for its meat and skin, but a lot of those farms have multiple species of closely related crocodiles and they can and do interbreed, meaning that the Siamese crocodiles in the farms are most likely hybrid animals.

In 2001 a team of conservationists traveled to Thailand to search for tigers, and one of their camera traps recorded a Siamese crocodile just walking along the river like it was no big deal. The photograph was especially lucky because it shouldn’t have even happened. The camera traps used actual film, not digital cameras which were still expensive and not very good back then. The rolls of film could capture 36 pictures before the film ran out, but the crocodile appeared on the 37th picture. Film is manufactured in long strips, then cut into pieces and rolled up and put in little canisters for a photographer to put in the camera, and the roll is a little longer than it needs to be because the ends have to be anchored in place. This particular strip of film just happened to be long enough to take 37 pictures instead of 36. If it hadn’t been, the conservationists wouldn’t have known the crocodile was still alive.

A follow-up expedition to look specifically for crocodiles discovered more of them. Since then a captive breeding program was set up, and in 2013 the first hatchlings were released into the wild.

Sometimes when a crocodile is killed, interesting things turn up in its stomach. This is what happened in 2019 when a crocodile farm in Queensland, Australia necropsied one of their saltwater crocs to see what he had died of. The croc was over 15 feet long, or 4.7 meters, and was about 60 years old. When they opened up his stomach, they found a piece of metal and six screws, the kind of metal called an orthopedic plate. It’s used to join two pieces of broken bone or strengthen an injured bone so it won’t break.

Medical devices like this are always etched with a serial number, but the metal was inside the croc’s belly for so long that the serial number was corroded off by stomach acid. This would have taken decades to happen, so the crocodile had to have eaten the metal decades ago, possibly as long as 40 years ago.

The farm contacted the police but so far they haven’t been able to trace what might have happened. The croc wasn’t bred on a farm but had been caught wild. The farm owner sent pictures of the plate to a surgeon, who determined that yes, it was probably from a human, not an animal, and that it looks like a type of plate used in Europe. The farm owner hopes the discovery will one day help solve a missing persons case.

Let’s finish with an interesting discovery in the rainforests of Gabon, a small country on the west coast of central Africa. The Abanda caves in the area are extensive, not very well explored, and full of bats and insects. A man named Olivier Testa, a professional explorer who often leads scientific expeditions into remote areas, heard a rumor about a population of orange [I read this as strange instead of orange and was too lazy to fix it] crocodiles living in the cave system. A lot of people would have just laughed, because everyone knows crocs and other reptiles like hot weather, sunshine, and warm water to hunt in. But when Testa got the opportunity to join an expedition into the cave system in 2010, he remembered the crocodiles.

Guess what they found in the cave. I bet you all guessed correctly. There really were crocodiles in the caves, specifically African dwarf crocodiles, and the biggest ones did look slightly orangey in color. Crocs don’t live in caves, but there they were. The following year the expedition returned, and this time they were there to find out more about the crocs.

A crocodile expert named Matthew Shirley came along, and he figured out why the crocodiles were in the cave. There are an estimated 50,000 bats living in the cave system, so many that the crocodiles could basically just reach up and snap bats off the walls to eat. There are lots of crickets in the cave too, and young crocs eat lots of insects.

As for the orange color of the older crocs, that comes from the water in the cave. Bats have to pee just like every other animal does, and where they roost over the water they pee into the water, naturally. So much bat urine actually has an effect on the water composition, turning it extremely alkaline. This affects the skin color of animals that stay in it for a long time, as the older crocs have.

The cave crocodiles appear to spend the dry season in the caves, eating bats and avoiding humans who hunt crocs. During the rainy season, they emerge from the caves to mate and lay their eggs in rotting vegetation outside.

This is the first population of crocodiles ever found that spends time in caves deliberately. Some researchers speculate that the crocodiles could eventually evolve into a new subspecies of dwarf crocodile that’s especially adapted to the cave system.

You know what we call those? We call them dragons.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 238: The Pink Fairy Armadillo and Two Adorable Friends

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

This week we’ve got three adorable little animals to learn about! Thanks to Simon and Thia, Elaine, and Henry for their suggestions!

Further reading:

Turning the spotlight on the rusty-spotted cat (Wildlife SOS)

The cute and fuzzy pink fairy armadillo:

The cute and fuzzy rusty spotted cat:

The cute and fuzzy baby Arctic tern:

Adult Arctic terns:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’ve got three strange and adorable animals for you, all listener suggestions because I’m getting really behind on those. Thanks this week to Simon and Thia, Elaine, and Henry!

First, Simon and Thia suggested the pink fairy armadillo. That’s one we covered briefly in a Patreon episode back in 2018, but it deserves to be featured in the main feed because it’s so strange and cute. It lives in deserts and grasslands of central Argentina, South America, but since its range is so restricted and it spends most of its life underground and is rarely seen by humans, we don’t know much about it.

The pink fairy armadillo is the smallest armadillo species known. It only grows about 4.5 inches long, or 11.5 cm, small enough to sit in the palm of your hand. It’s protected by a leathery shell that runs from its nose along the top of its head and down its back to its bottom, and the shell is segmented like a regular armadillo’s shell except that it’s a delicate pink. The fluffy fur on the animal’s sides and tummy is white. It has a short spade-shaped tail, but the rear of its body is flattened, and it uses its flat bottom to compress dirt in the tunnels as it digs. It has a small head, short legs, and gigantic front claws. Its hind claws are big too.

It spends almost all of its life underground, digging shallow tunnels and eating small animals like worms, insect larvae, snails, and insects like ants, which it probably hunts by scent. It has a good sense of smell but its eyes are tiny and its ears don’t show at all, although it does have good hearing. It can dig extremely quickly. It loosens the soil with its huge front claws, kicks it back with its hind claws, and then does a quick reverse to tamp the new dirt heap into a firm column with its flat bottom. This keeps the floor of its burrow clear so the armadillo can breathe properly and helps keep the burrow from collapsing.

Almost the only time the pink fairy armadillo surfaces is when it reaches an obstacle it can’t dig through or around, and then its claws are so big it has trouble walking on hard surfaces. This is bad if it tries to cross a road. Most sightings of pink fairy armadillos are of roadkill animals. Sometimes it surfaces after heavy rain when its burrows are flooded.

The reason the pink fairy armadillo’s shell is pink is that blood vessels show through it. Researchers think it can regulate its temperature according to how much blood flows through the vessels beneath the shell. The shell is only attached to the body by a membrane along the spinal column and doesn’t protect it as well as other armadillo shells do, but then it’s almost always underground so the shell probably mostly protects it from rocks and roots.

The pink fairy armadillo doesn’t do well in captivity, usually dying from stress within a day or two of capture, and since it’s almost always underground it can be hard to find and study. It’s threatened by habitat loss, climate change, poaching, and the use of pesticides. It’s extremely sensitive to changes in temperature and soil.

The pink fairy armadillo has a similar-looking but slightly larger relative, the greater fairy armadillo, which can grow up to 7 inches long, or 17.5 cm. It’s also a burrowing armadillo that lives in South America, which has an additional conservation problem. It’s considered by locals to be the spirit of a dead baby, so if a local sees it they usually kill it.

Next, Elaine suggested the rusty spotted cat. It’s a tiny cat that lives in forests and grasslands in South Asia, especially in India and Sri Lanka, and although it resembles a tiny domestic cat, it’s not all that closely related to domestic cats or their wild cousins.

The rusty spotted cat is reddish-gray with darker stripes on the face and small rusty-red spots over most of its body. It’s about half the size of a domestic cat and grows up to 19 inches long at most, or 48 cm, not counting its tail, which adds another 12 inches or so to its length, or 30 cm. This is where I tried to measure my cats with the soft plastic tape measure I use for sewing, but they thought it was a toy so I never did figure out how long they are. Also, my tape measure has holes in it now from claws and teeth. The rusty spotted cat only weighs up to about 4 pounds, or 1.8 kg. Keep in mind that these numbers are for the biggest possible rusty spotted cats. Most are much smaller. They’re basically kitten-sized.

The rusty spotted cat is mostly nocturnal and eats small animals like mice and other rodents, birds, lizards, and insects. It mostly hunts on the ground and mostly only climbs trees to escape predators. It’s a fierce hunter and can be very aggressive despite its small size, so even though it’s really cute and some people want to keep it as a pet, it’s very wild and not friendly. You’re way better off adopting a small domestic cat. Besides, the rusty spotted cat is endangered in the wild due to habitat loss and hunting for its fur, so we shouldn’t be keeping it as pets.

Conservationists are working to protect the rusty spotted cat by educating people who live in the area about what the cat is. While a mother rusty spotted cat is out hunting, she leaves her kittens in a little nest in long grass. If she makes her nest in a cultivated field, like a tea plantation, sometimes a worker harvesting or caring for the plants will find the kittens. People are basically good at heart and want to help baby animals, so a lot of times the worker will take the kittens home thinking they’re abandoned. A conservation group called Wildlife SOS is working to teach people to leave the babies alone, and when they hear about someone who’s found a kitten, they send someone out to learn where the kitten was found and when, and will reunite the kittens with their mother. Wildlife SOS also helps other animals in India, including leopards and elephants. There’s a link in the show notes if you want to find out more and maybe donate to the program to help these adorable teeny-tiny wildcats.

Finally, Henry suggested the Arctic tern, a bird that lives…pretty much everywhere, in fact, not just the Arctic. It breeds along the coasts in the northern parts of the northern hemisphere, including parts of Canada, Greenland, northern Europe, and Siberia, but after its babies are grown and the short northern summer comes to an end, it takes off for the southern hemisphere and spends the winter—which is summer in the southern hemisphere—around South Africa and Australia and New Zealand, all the way down to the Antarctic. When that summer ends, it flies back north to breed again. That’s an astoundingly long migration.

The Arctic tern spends most of its life flying above the ocean, hunting for small animals like fish, krill, amphipods, and crabs. It’s not a picky eater, though. It will also eat worms, insects, and berries, although it mostly eats these land foods when it’s nesting. It’s a beautiful bird that looks a little like a seagull, but is more lightly built and slender than most gulls. It’s white and pale gray with a black cap that extends down the back of the neck, a red bill, and short red legs and webbed feet. Its tail is forked like a swallow’s tail and it has long wings, which allow it to catch even the smallest sea breeze and fly extremely fast. Its wingspan is about 2.5 feet across, or 75 cm.

The Arctic tern mates for life. Even though the male and female have traveled literally around the world separately for most of the year, they both return to the same nesting ground, find each other, and start their summer courtship. The pair will fly high together with the female chasing the male, and then they’ll fly lower where the male will catch a little fish and offer it to the female. On land, they’ll do a little courtship dance where they raise and lower their tail and wings while strutting around together. Finally the pair decides where they want to build a nest.

The nest isn’t fancy, just a little scooped out place in the ground with maybe some grass in it. Parents take turns keeping the eggs warm and defending the nest from potential predators. It’s an aggressive bird and will even attack polar bears and drive them away, even though it’s just a delicate little bird. It will dive at the predator’s face and peck with its strong, sharp bill. Once the babies hatch, both parents feed the chicks until they learn how to fly.

An Arctic tern chick is possibly the cutest bird you will ever see, at least today. It’s gray and white with short legs, and it’s super super fluffy. The coloration helps it blend in with the rocks around the nesting site.

The Arctic tern travels over 40,000 miles every single year, or more than 70,000 km, and still manages to find its way back to the same breeding colony. How does it know where it is and where it’s going? Like many birds, it can sense the earth’s magnetic field. It combines this sense with where the sun is in the sky and can pinpoint exactly where it is in the world and where it needs to go. It’s like having built-in Google Maps.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes. There are links in the show notes to join our mailing list and to our merch store.

Thanks for listening!

Episode 237: Geckos and Other Arboreal Reptiles

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

Thanks to Riley, Richard, and Aiden and Aiden’s unnamed friend for suggestions this week! We’re going to learn about some geckos and other reptiles that live in trees. Thanks also to Llewelly for a small correction about lions. Also, I mispronounced Strophurus–it should be more like Stroff-YOUR-us but I’m too lazy to fix it.

Further reading:

Cancer Clues Found in Gene behind ‘Lemon Frost’ Gecko Color

A chameleon’s feets:

A rare healthy lemon frost domestic leopard gecko (photo taken from article linked above):

An ordinary leopard gecko:

I don’t remember what kind of gecko this is (golden spiny-tailed?) but I love it:

A crested gecko looking surprised:

The green iguana:

A black mamba. Watch out!

Flying snake alert!

The draco lizard with its “wings” extended (male) and the draco lizard with its “wings” folded (female):

A parachute gecko showing how it works:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about some reptiles, specifically reptiles that live in trees. This is a suggestion from Riley, who wanted to hear about arboreal reptiles in general and the crested gecko in particular. Thanks also to my brother Richard, who suggested the dragon-tailed gecko. An anonymous reviewer also suggested the leopard gecko so we’ll learn about that one too. Specifically, the anonymous reviewer said “me and my friend Aiden suggest either red foxes or leopard geckos.” We actually covered the red fox in episode 138, about city animals, and in episode 106, about domestication, but we’ve only mentioned the leopard gecko briefly way back in episode 20.

Arboreal animals have some traits in common, whether they’re reptiles or mammals or something else. In general, an animal that spends most of its time in trees is small and lightweight, either has long legs or very short legs, may have a long tail to help it balance, and may also have various adaptations to its feet to help it maneuver through branches.

This is the case with the chameleon, which is arboreal and has weird feet. Its feet look more like mittens. The feet are called zygodactylous, which means it has two toes pointing forward and two pointing backwards. A lot of birds have feet like this too. Chameleons have other adaptations for arboreal life, like prehensile tails that can twine around a twig to help it keep its balance. The chameleon really deserves its own episode some day, so let’s move on to learn about some geckos.

The biggest gecko known grows up to two feet long, or 60 cm, but most are much smaller. There are more than 1,800 species known and they’re all really interesting and honestly, adorable. They’re mostly nocturnal and eat small animals like insects. About 60% of all gecko species have toe pads that allow them to walk up walls and windows and even across ceilings.

Like many other lizards, most geckos species can drop their tail if a predator attacks. The tail thrashes around on its own for several minutes, distracting the predator so the gecko can escape. The gecko later regrows a little stumpy tail, but it can’t drop it a second time. Many species of gecko store fat in the tail, so it needs that tail. A genus of gecko called the fish-scaled gecko, which lives on Madagascar and nearby islands, has big scales that come loose easily if an animal tries to bite it or if a scientist tries to capture it. The predator gets a mouthful of scales while the gecko runs off. The scales grow back eventually and can be lost again.

Scientists are always interested in animals that can regenerate parts of the body, to learn how that works. A study published in 2017 identified the type of cells that allow the gecko to regrow the part of its spinal cord that’s lost with its tail. In 2018, the same team published their discovery that geckos renew brain cells. This is amazing, since humans and many other animals are born with all the brain cells they’ll ever have, and if something happens to injure the brain, the damage can’t be repaired. Maybe one day people will be able to heal their brains just like the gecko does.

Most species of gecko don’t have eyelids. Instead, the gecko has a protective scale over its eyeball. To remove dust and other debris from the scale, the gecko licks its eyes.

The leopard gecko grows about 11 inches long, or almost 28 cm, and is one of the species that doesn’t have toe pads. That makes it easier to keep in captivity, since it’s less likely to climb out of its terrarium. It’s a handsome lizard that’s yellowish or orangey in color with black spots, but baby leopard geckos actually have black stripes. It’s native to parts of the Middle East and south Asia where it’s mostly hot and dry, and in the wild it spends its day in a burrow and only comes out at night to hunt.

The leopard gecko has been kept as a pet for so long that some people consider it the first truly domesticated lizard. It’s easy to take care of and is usually comfortable around people. Breeders select for brighter colors than are found in wild geckos, including various color and pattern morphs.

One color variety of domestic leopard gecko is called the lemon frost morph, an especially attractive coloration. It’s a pastel yellow with white underneath and brown or black speckles that form broad bands over the lizard’s back. It’s really pretty and when the trait cropped up unexpectedly around 2015, its owner started breeding for the color. Lemon frost babies were rare and incredibly expensive, with people paying up to $2,000 for a single gecko.

Unfortunately, people soon learned that lemon frost geckos were prone to a type of rare skin cancer that affects the iridophores, which are pigment-producing cells. Up to 80% of all lemon frost morphs develop the cancer. Geneticists have discovered that the color morph is due to a single mutation in a single gene, but that the change in that gene also makes the gecko susceptible to cancer. Scientists are now trying to figure out more about how it works in hopes of learning how to prevent skin cancer in humans.

The dragon-tailed gecko is one name for the golden spiny-tailed gecko, one of twenty species in the genus Strophurus. All Strophurus geckos are from Australia and they all spend most of their lives in trees and shrubs. Unlike other geckos, Strophurus geckos don’t drop their tails when threatened. Instead, they have a unique way of deterring predators. A Strophurus gecko can squirt an incredibly smelly liquid from tiny pores in its tail. If it feels threatened, instead of dropping its tail, it will raise its tail up and wave it back and forth as a warning. It also opens its mouth to reveal a bright yellow or blue lining, which alerts the potential predator that this is not a lizard it wants to mess with. If that doesn’t scare the predator away, it will squirt liquid at its face. The liquid is sticky and smells horrible, and if it gets in an animal’s eyes it can cause eye irritation.

Strophurus geckos grow up to 5 inches long, or 13 cm, and species may look very different from each other. Some are drab and spiny, some are smooth and brighter in color. The dragon-tailed gecko has a broad reddish or golden stripe down the top of its tail.

The crested gecko is native to a collection of remote Pacific islands called New Caledonia. It can grow more than 10 inches long, or 25 cm. It has tiny spines above its eyes that look like eyelashes and more spines in two rows down its back, like a tiny dragon. It can be brown, reddish, orange, yellow, or gray, with various colored spots, which has made it a popular pet. These days all pet crested geckos were bred in captivity, since it’s now protected in the wild.

The crested gecko spends most of its time in trees, and not only does it have adhesive toe pads, it also has tiny claws. Most geckos don’t have claws. It can drop its tail like other geckos, but it doesn’t grow back. This doesn’t seem to bother the gecko, though.

The crested gecko was discovered by science in 1866, but wasn’t seen after that in so long that people thought it was extinct. Then it was rediscovered in 1994, so hurrah for the crested gecko!

Let’s move on from geckos to some other arboreal reptiles. A lot of reptiles live mostly in trees, and not all of them are small. The green iguana, for instance. It’s native to southern Mexico into parts of South America but has been introduced in many other places in the Americas, where it’s often considered an invasive species. In warm weather it lives in trees, although it will climb down to the ground in cool, rainy weather, and it can grow up to six and a half feet long, or 2m.

Although the iguana can be really long, most of its length is tail. It has an incredibly long tail for its size. It’s not that heavy, either, with the biggest green iguana ever weighed only a little more than 20 lbs, or 9.1 kg. Most are much lighter. It has long legs and long toes with claws, which makes it a good climber. It uses its tail to balance. It’s usually a drab olive-green or brown in color, although babies are brighter green with reddish spots and some adults are more orange in color. The tail is patterned with broad stripes. It has spines along its back and down its chin, and males develop a large dewlap that hangs down under the neck.

Although the iguana looks like a small dragon, it eats leaves, flowers, fruit, and other plant material, although it will also sometimes eat a grasshopper or snail and even bird eggs every so often. Many people keep green iguanas as pets, but they can be hard to keep healthy in captivity.

Another big reptile that lives in trees is the black mamba, a snake that lives in parts of Africa. It’s a slender snake that can be black in color, but that’s actually rare. The name black mamba comes from the inside of the snake’s mouth, which is black. When it feels threatened, it will raise its head high and open its mouth as a threat display. It can even flatten its neck to look like a hood like some cobras do. You really don’t want to see this threat display, because the black mamba’s venom is deadly and it’s an aggressive snake. Without treatment and antivenin, someone who is bitten can die within 45 minutes.

The mamba’s body can be gray, gray-green, brown, or brownish-yellow. It can grow nearly 15 feet long, or 4.5 meters, which makes it the second-longest venomous snake in the world, after the king cobra that we talked about in our Q&A episode last week.

The black mamba mostly lives in open forests and savannas, and it’s equally at home on the ground and in trees. It hides in termite mounds or in holes in trees at night, then comes out in the morning to warm up in the sunshine. Then it goes hunting, usually for small animals like rodents but also for larger ones like the rock hyrax. The rock hyrax can grow almost two feet long, or 50 cm, and looks kind of like a big rodent even though it’s not a rodent. It’s actually most closely related to the elephant. The black mamba will sneak up on a hyrax, bite it quickly, and then just wait until it dies to swallow it whole. The mamba also hunts birds and bats, which is why it spends so much time in the trees.

Some reptiles are so well adapted to living in trees that they can glide from tree to tree, like the flying snakes we talked about in episode 56. Flying snakes live in southeast Asia, and of course they can’t really fly. A flying snake has ridged scales on its belly that help it climb trees, and when it wants to move from one tree to another, it can flatten its body by flaring its ribs. This gives it more surface area to catch air, like a long skinny Frisbee. It’s been measured as gliding as far as 100 meters, or 109 yards, which is just a little longer than an American football field.

The largest species of flying snake, the golden tree snake, can grow over four feet long, or 1.3 meters. It’s striped black, gold, and yellow although some may be green and black. It eats small animals it finds in trees, including frogs, birds, bats, and lizards. It’s venomous, but its venom is weak and not dangerous to humans.

Many lizards can glide too, including the draco lizard. The draco lizard is common throughout much of southeast Asia and spends almost its whole life in trees, eating insects like ants and termites. It’s a small, slender lizard that only grows about 8 inches long at most, or 20 cm, and that includes its very long tail. Many gliding animals, like the flying squirrel, have gliding membranes called patagia that stretch from the front legs to the back legs, but the draco lizard is different. It has greatly elongated ribs that it can extend like wings, and the skin between the ribs acts as a patagium. This skin is usually yellow or brown so that the lizard looks like a falling leaf when it’s gliding.

The male draco also has a brightly colored dewlap under its chin that it can extend to attract a mate. When a female is ready to lay her eggs, she climbs down from her tree, finds some soil that’s soft enough for her to stick her head into to make a little hole, and then lays her eggs in the hole and covers them with dirt to hide them.

The draco lizard is beautiful and looks like a tiny dragon, and I want one to live in my garden and every time I go out to water my plants or pull weeds, I want it to fly down and ride around on my shoulder.

To bring us full circle, some geckos can also glide using thin membranes of skin around their body, legs, tail, and toes that act as patagia. They’re called parachute geckos, which is just perfect.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

BONUS Q&A Episode!

It’s our bonus question and answer episode, which turned out to be ridiculously long but hopefully interesting!

Further listening/watching:

The Axolotl Song

~~~Buy my books!~~~

Whiskers used to have two eyes and a nose. In the background, Dracula (left) and Poe (right):

Black squirrel!

King cobra!

Pufferfish, puffed:

Dog nose:

Show transcript:

Welcome to the bonus Q&A episode of Strange Animals Podcast! I’m your host, Kate Shaw, and this is a little extra episode where I answer listener questions. So let’s jump right into it.

To start us off, Simon and Thia wanted to know how I first became interested in animals. I really don’t know! When I was little, I didn’t want to play with dolls, I wanted to play with my stuffed animals. I actually have a toy cat named Whiskers who I’ve had since I was four. Whiskers is older than all my teeth! I especially loved horses as a kid and since my family couldn’t afford to buy me a horse, I took riding lessons and read everything I could find about horses, fiction and nonfiction. All that reading about horses led to reading about other animals, and the more I read, the more interested I became in animals of all kinds.

Next, Melissa of the awesome podcast Bewilderbeasts asked, “What was the fact or episode that really slapped you out of left field, like, ‘I didn’t see that coming AT ALL’?”

OH MY GOSH, how many times has that happened to me? The most astounding fact I can think of isn’t actually about an animal at all but about trees. While I was researching the Temnospondyl episode, which had a related Patreon episode that ran at about the same time, I came across the fact that when trees first developed, nothing could break down the tough compound called lignin that hardens a tree’s cells to make wood and bark. When a tree died, its trunk just stayed where it fell forever, and this happened for at least 50 million years and possibly 100 million years. 100 million years of tree trunks just lying all over the ground! You wouldn’t be able to walk anywhere! You’d have to climb over hundreds of millions of fallen tree trunks, although naturally as the years passed the older ones would get buried deeper and deeper in the earth. But there would always be more!

This blew my mind, and later I came back to it, determined to do more research and make sure it was accurate. I did a whole lot of research, because it just didn’t seem possible, and that information ended up in episode 214.

As for an animal that blew my mind, I still have trouble believing ice worms are real. They’re worms that live in snow and ice! We covered them last August in episode 185 and I’m still reeling.

Next, Llewelly asks what my favorite extinct animal is, or animals. Why would you make me choose? This is so hard. Okay, fine, I’ll narrow it down to hoofed Pleistocene megafauna like the giant deer and elasmotherium and so many other animals with weird horns and ossicones and things like that. What really gets me is that they lived so recently! Many of them only died out 11,000 years ago, and some were probably around much more recently in a few isolated areas. It also really reminds me to appreciate the megafauna that’s still around. We live at the same time as giraffes!

Next, Richard E. asked, “Does your job involve the study of animals and/or is the pod something that you really wanted to do?” Tracie also asked what my background is, if I’m a professor or zookeeper or something similar. Helenka also asked my background and how I got interested in strange animals.

I’m kind of embarrassed that I never have pointed out that I’m not an animal expert, to steal a phrase from the awesome podcast Varmints! I actually work as a test proctor, AKA invigilator, in a large community college, so my work doesn’t have anything to do with animals. My background is in elementary education although I didn’t teach long. Basically I got my K-8 teaching certification and M.Ed., did some substitute teaching afterwards, and ended up getting my current job instead of taking a teaching position. I still love teaching, so when I decided I wanted to start a podcast, I knew it would be nonfiction. My undergraduate degree is in English literature, and I took so many history courses that I minored in history almost by accident, so I’m really good at research and can write an essay about any topic in the world in very little time. I didn’t know it when I was in college, which was long before podcasts existed anyway, but I have the perfect background for creating a nonfiction podcast.

Liesbet has three questions about the podcast: what inspired me to start it, what motivates me to keep going without missing any episodes, and what I enjoy most about it. I’m so pleased that someone noticed I’ve never missed a single episode! Not that it would be the end of the world if I did, of course, but if I did, I’d feel bad thinking about people who were looking forward to listening to the new episode and were disappointed when there wasn’t one.

Here is the raw, honest truth about why I started Strange Animals Podcast. It was several things combined and the whole story is kind of dumb. First, my friend Kevin makes a great pop culture podcast called The Flopcast, and after I’d listened to it for a while I thought, “Hey, that sounds like fun. I think I’ll start a podcast.” About the same time, I was listening to a back episode of a podcast I will not name, and it gave some misinformation about the Irish elk, specifically the outdated theory that it went extinct because its antlers were too big. I mentioned that in episode 4 and how I kept thinking about it and got kind of angry that a large, influential podcast hadn’t bothered to do enough research about an animal that lots of people are interested in. I decided I could do better and that my podcast would be about animals. Also at the same time, I was trying to find a good podcast about mystery animals that was well researched and didn’t skate off into speculation too much. I couldn’t find one that satisfied me, so I had to make one myself.

I wasn’t exactly sure what my focus would be when I first started the podcast. You can kind of tell when you listen to the first six months or so of the podcast that I was trying out new things and figuring out what worked best and what I liked best. I’m still figuring that out, for that matter.

It’s hard to decide what I like best about making the podcast. I like the whole process, except maybe not the frustrating parts of recording and editing. I think my favorite part has to be when I uncover information I find really exciting. I get to share that information with everyone who listens! It’s fantastic!

Next, let’s get into some questions about animals.

Pranav asked if I would explain how poisons work, which is a great question and also just a tiny bit alarming. No one eat anything Pranav cooks for you unless he’s eating some too. Actually, of course, he’s just wanting to learn more about poisonous animals, and I’ll talk about venomous animals too.

A poisonous animal contains toxins somewhere in its body, like the hooded pitohui bird that we talked about in episode 222 that has poisonous feathers. The poison stops other animals from trying to eat it. In the case of the hooded pitohui, its poison causes your skin to burn when you touch it, so an animal that tries to bite it will have a burning mouth. If it actually eats any of the poison, the animal can die. Many amphibians secrete toxins through their skin, like the poison dart frog, and many other animals concentrate toxins in their muscles or internal organs.

A venomous animal has toxins that it can inject into a wound to hurt or kill another animal. Some snakes can inject venom with special fangs, but some amphibians have pointed ribs that are sharp enough to stab a potential predator. The ribs will project through the amphibian’s sides through tiny spots that are filled with toxins. The toxins coat the points of the ribs, and if the predator tries to bite down, it gets those toxins stabbed right into its mouth. Some fish have spines that are coated in toxins, and of course many insects, arachnids, and other invertebrates have stingers that inject toxins.

Generally, a poisonous animal absorbs toxins from a food it eats, often a toxic insect, and instead of getting sick, it uses those toxins to protect it from predators. A venomous animal usually produces its own toxins in its body, especially animals that use venom to kill or disable prey. It costs energy for the animal to make venom, and it doesn’t want to waste it. That’s why snakes will sometimes give what are called dry bites in self-defense, where it bites but doesn’t inject any venom. It’s hoping that the pain of the bite itself will make a potential predator retreat without the snake needing to use venom.

Different toxins have different effects, naturally, and animals produce so many different kinds of toxins that we could talk about it all day and not even cover them all. Instead, let’s quickly discuss two animals, one venomous and one poisonous.

Our venomous example is the king cobra. It can grow over 18 feet long, or 5.5 meters, and lives in southern Asia. It mostly eats other snakes and some lizards. Its venom contains numerous toxins that do different horrible things. The neurotoxins in its venom affect the central nervous system, which can cause all sorts of issues like dizziness, pain, blurred vision, sleepiness, and even paralysis. Other toxins in the venom are called cardiotoxic because they affect the heart, making it weak so that circulation of blood slows down. If a king cobra bites you and injects venom, you can die within 30 minutes as the venom basically just shuts your body down, one process at a time. If your heart stops or your diaphragm becomes paralyzed so you can’t breathe, that’s it for you. Fortunately, in ordinary situations the king cobra is shy and avoids people, so if you don’t bother it, it won’t bite you.

Our poisonous example is the pufferfish. Some species of pufferfish are incredibly poisonous. You may have heard about fugu, which is considered a delicacy even though it’s so poisonous that in Japan and some other countries, chefs have to be specially trained and licensed to prepare the fish to eat. The part of the fish that’s considered tastiest is also the part that’s most poisonous, the liver. It contains tetrodotoxin, which is a neurotoxin that stops your nerves from sending the tiny electrical signals that allow them to move. If you’re poisoned with tetrodotoxin, you start to feel dizzy and sick, then you start having difficulty speaking and moving, then you have trouble breathing, and then, ultimately, you’re paralyzed and can’t breathe, at which point you die. Since the toxin doesn’t affect your brain, you remain completely aware of what’s happening to you but there’s nothing you can do about it. There’s no antidote. Fortunately, you have the option of not eating fugu. Also, it turns out that the pufferfish’s poison comes from a type of bacteria, so fish raised in careful conditions in captivity aren’t poisonous.

Most poisonous and venomous animals are harmless to humans!

Next, Connor wrote and said, “I recently moved to Michigan from West Virginia and noticed a lot of black squirrels around. Are they a different species/sub-species or just melanistic individuals?”

I looked into this and sure enough, Michigan and other areas around the Great Lakes are known for a large population of black squirrels. I’ve never seen a black squirrel but now that I’ve looked at pictures of them, they are awesome and I wish I had some in my yard.

The eastern gray squirrel is the most common species of squirrel in eastern North America, and a black morph of that species and other squirrel species is not that unusual. The color difference is due to a small mutation in the gene that controls how much pigment the squirrel’s fur contains. Connor is right that the coloration is due to melanistic individuals.

But that doesn’t explain why there are so many black squirrels in Michigan and surrounding areas. No one’s completely sure why that is. In other animals, including the gray wolf and the leopard, melanistic individuals are more common in areas where there’s thick vegetation that blocks a lot of sunlight. A dark-colored wolf or leopard is better camouflaged in the shadows, which allows it to sneak up on prey. But the squirrel isn’t a predator, and black squirrels don’t seem to be any more common in heavily forested areas compared to more park-like areas.

One suggestion is that black squirrels find it easier to stay warm in cold weather, because dark fur absorbs more heat than gray fur. This actually does seem to have some basis in fact. Black squirrels are much more common in northern areas, including parts of Canada where the eastern gray squirrel ordinarily doesn’t live. Black squirrels are correspondingly rare in more southern areas where winters are mild, which explains why I’ve never seen one. Then again, the fox squirrel is also common in eastern North America, often living in the same areas where eastern gray squirrels live, and they also have a black morph, but black fox squirrels mostly live in the southeast. So it’s a mystery.

Black squirrels are the same as ordinary colored squirrels. They just look different. That reminds me that I have an episode about squirrels planned for some time later this year, especially unusual squirrels.

Next, Anna has a question about dogs. She says, “We have a dog named Sadie, who is a beagle mix. She is much more aware of the sounds and smells around us and often howls and barks at things that we can’t see. How do dogs have such a strong sense of smell and good hearing?”

The wild ancestors of dogs were wolves. Wolves are generally nocturnal, and as a result, dogs have sensitive hearing and smell to find prey when it’s dark. A dog can hear in the ultrasonic range, which refers to sounds higher than human hearing. Humans can hear sounds up to 20,000 hertz, while dogs can hear sounds up to 50,000 hertz. A dog also has a lot of muscles in its ears that allow it to turn its outer ear to find sounds. While some dog breeds have lapped-over ears, wolves and many dog breeds have pricked-up ears that act as little satellite dishes to gather up as many sounds as possible. If you cup your hands behind your ears, you can get a sense of how this helps. A dog also has a relatively large ear canal, which is the inside part of the ear. A large ear canal allows more sound vibrations in. Cats actually have even better hearing than dogs, but cats don’t have nearly the same ability to smell.

A dog’s sense of smell is incredible. Humans have about six million olfactory receptors in our noses. That sounds like a lot, but a dog has over 200 million olfactory receptors! It can also process all those smells incredibly well in its brain, so that with training a dog can detect unbelievably faint smells. That’s why dogs are used to sniff out dangerous items like bombs and illegal drugs, or find people who are buried in rubble after an earthquake or other disaster, or track down people who are lost. Dogs can even learn to detect the smell of some diseases, including cancer, malaria, and tuberculosis.

A dog’s nose is much different from a human nose. If you have a dog, or can borrow a friend’s dog, sit down and take a look at their nose. Ha ha, the dog just licked you in the face! That’s hilarious! The dog’s nose has nostrils in the front but if you look carefully, you’ll see that the nostril openings continue along the sides of its nose, in a little slit. There’s also a little fold of tissue inside the nose. The tissue separates the air into two streams. One stream goes into the lungs, but the other gets circulated into the nose to come in contact with all those olfactory receptors. Then, when the dog breathes out, the air goes out the side slits instead of out the main nostrils, so it doesn’t push any odors out of the nose. A dog’s nose works best when it’s damp, which is why a healthy dog has a wet nose.

When you hear a sound, you can usually tell which direction it’s coming from by turning your head, because the sound will be slightly louder in one ear than the other and your brain can make sense of this difference. Dogs can tell which direction a smell is coming from because its brain can tell which nostril is picking up more of the smell.

A dog’s sense of smell is so acute, and so important to the animal, that a dog that loses its vision can often do just fine. It can smell its way around. Naturally, some dog breeds have a better sense of smell than others, and some individuals are better at smelling than others too.

Don’t feel bad about your sense of smell, though. Humans may not be as good at smelling as dogs are, but we can train ourselves to be more sensitive to faint odors. The next time you take a walk, pay attention to what you’re smelling and I bet you’ll notice a lot more scents than you realize.

Next, Helenka also wanted to know about my writing. Thank you so much for asking! Now I can plug my books and also tell you how the strange animals podcast book is coming along!

I mostly write fantasy fiction. I have a steampunk adventure book available called Skytown, and a related collection of short stories about the same characters from the book, which is called Skyway. Sometimes I get the titles confused because they’re really similar, but Skytown is called that because there’s a city in the book that can only be reached by air, which in this fantasy world is mostly airships. The main characters are two young women named Jo and Lizzy, friends who are airship pirates. It’s a lot of fun, and the short story collection actually tells how Jo and Lizzy met and what they did together right up to the start of the novel. If that sounds interesting, I’d love it if you could pick up a copy of one or both books. They’re published by small independent publishers, who don’t make a lot of money and have trouble getting books into physical stores. There’s a link in the show notes.

Okay, so now I get to tell you all about the Strange Animals Podcast book! I’ve been working on it all year and it’s getting really close to being done. The title is Beyond Bigfoot and Nessie: Lesser-Known Mystery Animals from Around the World, and most of the material is taken directly from mystery animal episodes from the last four-plus years, BUT I’ve made sure to update the chapters as much as possible and I’ve added some new chapters.

I’ve decided to self-publish the book, so I’m planning a Kickstarter to cover the costs of hiring a cover artist and things like that. I’d like to run the Kickstarter in October, which would give me time to get it published hopefully in time for the holidays in case people want to order copies to give as gifts. We’ll see how that goes, though. There’s a ton of work that goes into running a successful Kickstarter, and although I don’t need a whole lot of funding for the book, it still worries me that maybe no one will be interested and it won’t meet its funding goal and I’ll have to pay for everything out of pocket. I’m already kind of broke this year from paying about $5,000 to the emergency vet to save my cat Poe’s life, but honestly, if the choice is between having Poe running around and playing or self-publishing a book, I will choose Poe every single time.

Anyway, one way or another I’ll make sure the Beyond Bigfoot and Nessie book is available to buy before the podcast’s fifth year anniversary in February 2022!

Finally, this wasn’t sent in as a question but I thought it would be a nice way to finish off the episode. In a really nice review, a listener who I think is named Meg said “I think she’s southern like me but not sure.” Yes, I am southern, although I don’t have much of an accent. I was born in Georgia and grew up in East Tennessee, where I live now.

Thanks to everyone who sent in questions! We’ll probably have another Q&A episode eventually, maybe next year, so feel free to send me your questions! I think I got everyone’s questions answered this time, but if I missed yours, definitely let me know. The best way to get in touch with me is through email, strangeanimalspodcast@gmail.com.

To finish us off, Richard from NC wanted me to play the Axolotl song. I won’t play the whole thing, because it’s kind of long, but here’s a clip and there’s a link in the show notes. It’s by an animator and musician called Joel Veitch. I’ve had this song stuck in my head ever since Richard sent me the link, so now you will too. Also, I promise I’ll make a whole episode about the axolotl soon.

Thanks for listening!

Episode 234: Sun Bears, Water Bears

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

Thanks to Enzo and Lux for their suggestions! Let’s learn about the sun bear and the water bear this week!

Sun bear just chillin:

Sun bears got long tongues:

The water bear, AKA tardigrade, is not actually a bear. For one thing, it has twice the number of legs as bears have:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s summer in the northern hemisphere, which means hot weather and sunshine and, if you’re lucky, a trip to the lake or ocean. To celebrate summertime, let’s talk about two animals suggested by Enzo and his sister Lux. They wanted to hear about the sun bear and the water bear. Get it? Sun and water?

Enzo’s suggestion is the sun bear, which we talked about a little bit way back in episode 76, but which is a fascinating animal that deserves a lot more attention.

The sun bear lives in southeast Asia in tropical forests and is most closely related to the black bear. It has silky black fur, although some are gray or reddish, and a roughly U-shaped patch of fur on its chest that varies in color from gold to almost white to reddish-orange. Its muzzle is short and is lighter in color than the rest of its face, usually gray. It has small ears too. It’s the world’s smallest bear, only around three feet long from head to tail, or 150 cm, and four feet tall when standing on its hind legs, or 1.2 meters. Researchers think its chest spot acts as a threat display. When a sun bear stands on its hind legs, the chest spot is really obvious, which may warn potential predators away. Even so, tigers and leopards will attack and eat sun bears.

The sun bear spends a lot of time in trees, more than any other bear. It has long claws that it uses for climbing and to tear open logs to get at insect larvae. It eats a lot of termites and especially loves honey, which it licks from the hive with its long tongue–up to 10 inches long, or 25 cm. It also eats a lot of plant material, especially fruit and acorns. It will catch and eat birds and small animals, or sometimes larger animals like deer, but it mostly eats insects and fruit.

The female sun bear makes her den in a hollow tree to give birth. She has one or two cubs at a time, and like other bear cubs they’re born extremely small and with their eyes and ears sealed shut. This is the case with animals like dogs and cats too, but newborn bears are tiny compared to how big the mother bear is. The eyes and ears continue developing after the cub is born, but it’s a few months before it can see and hear properly. A cub remains with its mother for almost three years.

Other than mothers and babies, the sun bear is solitary. Adults don’t typically interact except to mate, although adult sun bears kept in captivity will play together. A 2019 study of sun bears came to a surprising conclusion that they communicate with each other by mimicking facial expressions. This is something humans do all the time, of course, and apes do too. Dogs also mimic facial expressions. Humans, apes, and dogs are all intensely social animals, so researchers have always assumed that the mimicking of facial expressions is important because of that sociability. I mean, that just makes sense. If you see a friend approaching and they have a big smile on their face, naturally you’re going to smile too. But here are these solitary bears with facial communication just as well-developed as in apes. Researchers think it may be a trait that’s so important to mammals as a whole that it develops even in species that don’t spend a lot of time interacting.

The sun bear is threatened by habitat loss and hunting, but it does well in captivity and is popular in zoos. Conservation efforts are in place to protect the sun bear in the wild as well as continue a healthy captive breeding program around the world.

Lux wanted to hear about the water bear, which is also called the tardigrade or the moss piglet. I can’t believe we haven’t covered the tardigrade before—we even have one in our new logo! Patrons may remember parts of this section from a Patreon bonus episode from 2017, but I’ve updated it a lot.

The water bear isn’t a bear at all but a tiny eight-legged animal that barely ever grows larger than 1.5 millimeters. Some species are microscopic. Pictures of the water bear are taken with an electron microscope because otherwise they just look like a teensy little dot.

There are about 1,300 known species of water bear and they all look pretty similar. It looks for all the world like a plump eight-legged stuffed animal made out of couch upholstery. It uses six of its fat little legs for walking and the hind two to cling to the moss and other plant material where it lives. Each leg has four to eight long hooked claws. It has a tubular mouth that looks a little like a pig’s snout or a bear’s snout.

An extremophile is an organism adapted to live in a particular environment that’s considered extreme, like undersea volcanic vents or inside rocks deep below the ocean floor. Tardigrades aren’t technically extremophiles, but they are incredibly tough. Researchers have found tardigrades in environments such as the gloppy ooze at the bottom of the ocean to the icy peaks of the Himalayas. It can survive massive amounts of radiation, dehydration for up to five years, pressures even more intense than at the bottom of the Mariana Trench, temperatures as low as -450 Fahrenheit, or -270 Celsius, heat up to 300 degrees Fahrenheit, or 150 Celsius, and even outer space. It’s survived on Earth for at least half a billion years. Mostly, though, it just lives in moss.

One thing to remember is that different species of tardigrade are good at withstanding different extreme environments. Not every tardigrade is able to do everything we just talked about. They’re tough, but they’re not invulnerable. Many species can withstand incredible heat, but only for half an hour or less. Long-term temperature increases, even if only a little warmer than it’s used to, can cause the tardigrade to die.

Most species of tardigrade eat plant material or bacteria, but a few eat smaller species of tardigrade. It has no lungs since it just absorbs air directly into its body by gas exchange. It has a teeny brain, teeny eyes, and teeny sensory bristles on its body. Its legs have no joints. Its tubular mouth contains tube-like structures called stylets that are secreted from glands on either side of the mouth. Every time the tardigrade molts its cuticle, or body covering, it loses the stylets too and has to regrow them. In some species, the only time the tardigrade poops is when it molts. The poop is left behind in the molted cuticle.

The tardigrade’s success is largely due to its ability to suspend its metabolism, during which time the water in its body is replaced with a type of protein that protects its cells from damage. It retracts its legs and rearranges its internal organs so it can curl up into a teeny barrel shape, at which point it’s called a tun. It needs a moist environment, and if its environment dries out too much, the water bear will automatically go into this suspended state, called cryptobiosis.

The tardigrade’s DNA gets fractured during dehydration but it’s incredibly successful at repairing its DNA upon rehydration, which explains a big part of its success. In 2016, Japanese researchers sequenced the genome of the species of tardigrade that best resists radiation. In the process, they discovered a new protein in the tardigrade’s genome, which they named DSUP, short for damage suppressor. Even more interesting, when cultured human cells were given the ability to create DSUP, after exposure to X-rays, they showed half the DNA damage that non-DSUP cells showed.

Tests in 2007 and 2011 that exposed tardigrades to outer space led to some speculation that tardigrades might actually be from outer space, and that they, or organisms that gave rise to them, might have hitched a ride on a comet or some other heavenly body and ended up on earth. But this isn’t actually the case, since genetic studies show that tardigrades fit neatly into what we know of animal development and evolution.

The tardigrade is probably most closely related to arthropods, like insects and spiders. Their closest relatives were probably lobopodians, extinct wormlike organisms with stubby legs. The famous Hallucigenia creature is a lobopodian, which we talked about in episode 69 about the Cambrian explosion. There’s still a lot we don’t know about the tardigrade’s ancestry, since we have so few fossilized water bears, but many researchers think their oldest ancestors were probably much bigger than the microscopic or nearly microscopic living animals. In other words, maybe once there were water bears you could pick up and hug. Well, they probably weren’t that big, but I like to imagine it. I think that if you hugged a water bear too hard, it would make this noise: [little prrrt sound]

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way, and don’t forget to join our mailing list. There’s a link in the show notes.

Thanks for listening!

Episode 232: Almost Domesticated

Sign up for our mailing list! Buy our merch!

Thanks to “dog freak Ruby,” we’re going to learn about some animals that aren’t exactly domesticated but aren’t really wild either.

Further reading:

Memories of Ángela Loij

Mongolian horse and its person:

Mongolian horses:

OH MY GOSH HEART HEART HEART (photo from this website):

Dingos!

An artist’s rendition of the Fuejian dog (left) and a picture of the cuelpo (right):

The cuelpo, happy fox-like canid:

A very fancy rat:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Before we get started, and before I forget again to tell you about this, I’m planning a bonus Q&A episode for August. If you have any questions about the podcast, podcasting in general, me, or anything else, feel free to email me at strangeanimalspodcast@gmail.com, or otherwise contact me through social media!

A few episodes ago I mentioned in passing that the Australian dingo is a type of feral dog. It’s a more complicated situation than it sounds, so while I didn’t want to confuse the issue at the time, I kept thinking about it. Then I remembered that a listener emailed me a while back wanting to know more about how dogs were domesticated. We covered the topic pretty thoroughly back in episode 106, but I realized that there’s an aspect of domestication we didn’t cover in that episode. So thanks to “dog freak Ruby,” here’s an episode about a few animals that are only semi-domesticated.

Domestication, after all, isn’t a switch you can flip. It’s a process, and depending on the animal species and the circumstances, it can take a really long time. It’s not the same thing as taming an animal, either. An individual animal might become tame with the right treatment, but that doesn’t mean any individual of that species would react the same way. Domesticated animals show genetic changes that their wild counterparts don’t, changes that make them more likely to treat humans as friends instead of potential predators.

Generally, a fully domesticated animal requires some level of care from a human to survive, even if it’s just feral cats living near humans so they can find and kill rodents and avoid most predators. Feral domesticated cats don’t live the same way as their wild ancestors do. But sometimes it’s not as cut and dried as it sounds. While mustangs and other feral horse populations are considered domesticated animals, they live like wild animals and don’t need humans to survive. They mostly just need humans to leave them alone so they can thrive on their own. But if you capture a mustang that’s lived its whole life in the wild, with the right treatment it will eventually become tame, because its ancestors were bred for thousands of years to trust and depend on humans.

That brings us to our first semi-domesticated animal, the Mongolian horse. Yes, I’m still really into Mongolia and the Hu, and I’m excited to say I have tickets to see the Hu twice in concert this fall, if everything goes well. I’ve been listening to a program called the Voice of Mongolia in English, which is primarily a shortwave radio program but it’s also released as a podcast, and it talks about various aspects of Mongolian culture. Recently they had an episode about horses, so some of my information comes directly from that show.

Mongolia is a country in central Asia that’s mostly open steppes, which is a type of grassland. The soil isn’t right for most crops, but it’s great for horses. The people of Mongolia are traditionally nomadic, moving around from place to place to find grazing for their horses and other livestock, and about half of the current population still lives this way.

The Mongolian horse is a small, tough breed that probably hasn’t changed much in the last thousand years, possibly longer. It’s one of the oldest breeds of horse in the world and the ancestor of many other horse breeds. For a long time people assumed it was the domesticated descendant of the wild Przewalski’s horse, but genetic testing has determined that domestic horses developed from a different wild horse species that’s extinct now. Genetic testing also showed that the Mongolian horse has the highest genetic diversity of any horse breed tested. It’s incredibly strong for its size, can gallop for miles without tiring, has strong hooves that never need trimming or shoeing, and seldom needs or receives veterinary care.

The main reason for all these traits is that Mongolian horses live like wild horses in most ways. They live loose, grazing as they like, and if they get too far away from their humans, the owners will go out to find them. But they’re still domesticated. Mare’s milk is an important part of the Mongolian diet, so the mares are used to being milked, and people use their horses to ride, carry packs, and pull carts. The stallions are frequently raced. At the same time, though, they’re not really pets. Mongols don’t give their horses names, but instead refer to them with a detailed description. The Voice of Mongolia in English says the Mongolian language has over 300 words to describe horses, while Wikipedia says it’s over 500. Either way, the terminology is so precise that everyone knows exactly which horse someone’s talking about, which if you think about it is more useful than a name.

The Australian dingo is in a similar situation. It’s considered a feral dog breed, but it doesn’t need people to survive. Most feral dogs throughout the world barely scrape by, eating garbage and rats and often dying of starvation or disease. Dingos live like wild animals and do just fine. But at the same time, they’re happy to hang out with people from time to time, acting as hunting companions who are neither dependent on humans nor frightened of them.

The dingo is a strong, tough, lean dog that stands around 22 inches tall at the shoulder, or 56 cm. It has flexible joints like the Norwegian lundehund we talked about in episode 230, which allows it to climb cliffs and fences and otherwise navigate difficult terrain. It’s usually a yellowy or ginger color, sometimes with small white markings, although some dingoes are black and tan. It can survive on very little water. It often hunts in packs and will hunt animals larger than it is, like the red kangaroo.

The dingo was probably brought to Australia by humans, although we’re not sure when. Dingo fossils have been found dating to 3,500 years ago in western Australia, so it was at least that long ago. Genetic studies show that the modern dingo and the dingo of 3,500 years ago are pretty much identical. It also shows that it’s definitely a domestic dog, related to other dog breeds that were once common in Asia around 7,000 years ago, but which are rare now. It’s most closely related to the New Guinea singing dog, which makes sense since New Guinea is so close to Australia. Until somewhere between 6,500 and 8,000 years ago, New Guinea and Australia were connected when sea levels were low. Genetically the two dog breeds have been separated for about 8,300 years, which suggests that the dingo has been in Australia for at least that long.

Traditionally, Aboriginal Australians would take a dingo puppy from its den to keep as a pet, a hunting dog, or sometimes a herding animal. Sometimes the dingo would stick around when it was grown, but sometimes it would return to the wild. There’s a lot of controversy about breeding dingoes as pets, since it would be easy to breed the wild traits and behaviors out. Since the dingo has been killed as a livestock pest since white settlers arrived in Australia, in many places its numbers are in decline and there are worries that the wild dingo could go extinct. There are already problems with the dingo cross-breeding with other dog breeds. It’s a complicated topic, because while the dingo is a dog, it’s not precisely domesticated at this point but also not precisely a wild animal.

There used to be a domesticated canid in South America called the Fuegian dog, which was probably used as a hunting dog, especially to hunt otters. On cold nights, the dogs would wrap themselves around their people like living blankets so everyone stayed nice and warm.

The Fuegian dog wasn’t a dog, though. It was the domesticated form of the culpeo, also called the Andean fox. It’s actually not a fox although it looks a lot like one. It’s related to wolves and jackals, and it lives on the western slopes of the Andes Mountains all the way down to the southern tip of Patagonia. It eats small animals like rodents and introduced European rabbits. While the culpeo is sandy or tawny in color with gray on its back and a black tip to its tail, the Fuegian dog was sometimes brown and white or all white. Reportedly the Fuegian dog was not very tame in general and was an aggressive animal compared to actual dogs. It would hunt on its own and basically acted like a wild animal that just happened to hang out with humans a lot, like the dingo does today.

The culpeo is doing just fine, but the Fuegian dog is extinct. The Fuegian dog was tamed by a Patagonian people called the Selk’nam [shelknam], or ‘Ona, who were nomadic hunter-gatherers. They lived in such a remote part of South America that Europeans didn’t encounter them until the late 19th century when settlers showed up to raise sheep and rubber trees. We’ve talked about what happened to them in a previous episode, although I can’t remember which one. The Selk’nam didn’t understand the concept of livestock, so they figured those sheep were literally fair game. The sheep were living on their own hunting grounds, after all. The Selk’nam killed some of the sheep, and in retaliation, the European settlers murdered all the Selk’nam. I was going to tell you the name of the man who started the genocide, but I don’t think anyone should remember his name. It wasn’t just “oh, you killed my sheep, I’m going to shoot you because I’m mad,” either. There was a bounty on Selk’nam people, and that’s all I’m going to say because it’s just too awful and disturbing.

By 1930, only about 100 Selk’nam remained alive, and the very last member of the people, Ángela Loij, died in 1974. There’s a link in the show notes to a page with lots of information about her as a person.

In 1919 when Christian missionaries visited what was left of the Selk’nam, they discovered that all the dogs had been killed off by the people themselves because the dogs were too fierce and killed livestock. It sounds like a last, desperate attempt by the Selk’nam to stop the murder of their people by keeping their dogs from killing any sheep. But by then it was too late, and the genocide wasn’t really about the sheep in the end. It was racism and hatred. Remember that all people are equal, no matter what they look like or how they live. Don’t ever let anyone tell you otherwise.

Okay. Let’s finish with the story of another semi-domesticated animal, one that doesn’t involve people being terrible to each other. The kind of rat you can buy as a pet is considered semi-domesticated, and it hasn’t actually been domesticated for very long. The person mainly responsible for the pet rat is a man called Jack Black. Not the actor Jack Black; this was a different guy who lived in the mid-19th century.

Jack Black was a ratcatcher in London, England who said he was the Queen’s official rat-catcher even though he wasn’t. He was definitely an extravagant character who always wore what he called his uniform, which included a big leather sash over one shoulder decorated with rats made of iron, a crown, and the initials V.R. for Victoria Regina, or Queen Victoria. He told people the queen herself gave him the sash, but actually his wife made it for him. Black also carried a big domed cage with him to hold the rats he caught.

He mainly caught rats to sell to people who were training their dogs to kill rats, which was also a popular thing to watch. I mean, that doesn’t sound like any fun to me but this was before video games were invented. Occasionally, though, Black would catch a rat that had interesting markings or that was an unusual color. These rats he would keep, tame, and breed to produce more rats with different colors and patterns. He sold the tame, pretty young rats to people as pets. He especially liked white rats, which made popular pets then and are still popular today.

Pet rats, usually called fancy rats, are a subspecies of the brown rat, or Norway rat, which we talked about in episode 143. We also talked about Jack Black briefly in that episode, but at the time I didn’t realize he wasn’t really a royal rat catcher. By 1900 fancy rats were popular pets and remain so today, and are becoming more and more domesticated. If they’re not fully domesticated they’re well on their way, all thanks to a guy who thought rats were neat.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes. There are links in the show notes to join our mailing list and to our merch store.

Thanks for listening!

Episode 223: The Elephantnose Fish and the Burmese Star Tortoise

Sign up for our mailing list!

This week let’s learn about an amazing little fish and an awesome tortoise! All the pictures here were taken by ME at the Tennessee Aquarium in Chattanooga!

Further Reading:

Star tortoise makes meteoric comeback

The astonishing elephantnose fish:

Burmese star tortoises:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. I’m fully vaccinated now so I’m able to go out and about cautiously, still wearing a mask of course, and this weekend I went to the Tennessee Aquarium in Chattanooga. I had a fantastic time and saw lots and lots of amazing fish and other animals! If you ever get a chance to visit, it’s definitely worth it.

When I got home, I kept thinking about one particular fish. I wanted to learn more about it. So I decided to make an episode about that fish and another animal I saw at the aquarium.

The fish that captivated me so much is called the elephantnose fish. I’d never seen anything like it. The one I saw was about the length of my hand, dark gray or black in color, and looked like a pretty ordinary fish except for the proboscis that gives it its name. The fish has a flexible projection from its nose that it was using to probe around in the gravel at the bottom of its river habitat.

I should mention that the Tennessee Aquarium has enormous displays, beautifully designed to mimic the animals’ natural habitat and give them plenty of room to move around. There’s one tidal animals display in the ocean side of the aquarium where the water sloshes through and around rocks to mimic the tide. It’s fascinating to watch the fish in that exhibit stay pretty much motionless despite the water’s movement, because that’s what they’re adapted for. So there’s plenty of opportunities to see an animal’s behavior.

Anyway, I took lots of pictures of the elephantnose fish and when I got home, I started researching it. It turns out that it’s way more interesting even than I thought!

It lives in rivers and other freshwater in central Africa and grows up to 9 inches long, or 23 cm. That’s according to the info display next to the exhibit. The display also said the fish was a species called Peter’s elephantnose fish, although it’s possible they have more than one species on display. There are a lot of elephantnose fish, more properly called mormyrids or freshwater elephantfish, and many of them have this interesting proboscis.

The proboscis isn’t actually a nose like an elephant’s trunk. It’s technically a modified chin and mouth, called the Schnauzenorgan. The elephantnose fish mostly eats small worms and insect larvae, and it especially loves mosquito larvae.

The elephantnose fish uses electroreception to navigate the muddy waters where it lives and find food. Its whole body, and especially its Schnauzenorgan, is covered with electrocyte cells that can detect tiny electrical pulses. If you remember way back in episode ten, about electric animals, many animals can sense the weak bioelectrical fields that other animals generate in their nerves and muscles. It’s especially common in fish since water conducts electricity much better than air does. But the elephantnose fish also generates a stronger electric field of its own, which it uses as a sort of sonar. It generates the field in special electric organs in its tail, and as it moves around in the water, the electric field comes in contact with other things—plants, rocks, other fish, and so on. It’s not strong enough to give an animal a shock, but it’s strong enough for the elephantnose fish to easily sense changes in its environment. The fish can tell what it’s near because its electrical field interacts differently with different things. A rock, for instance, doesn’t conduct electricity so the fish probably senses it as a blank spot in its electrical field, while a plant may conduct electricity even better than water and therefore changes the shape of the fish’s electrical field in a particular way. But it doesn’t generate its bioelectric field all the time. It can control when it discharges pulses of electricity the same way a dolphin can control when it sends out pulses of sound. If the fish feels threatened, maybe by another elephantnose fish nosing in on its territory, it will pulse much faster so it can keep tabs on what the other fish is doing—plus, of course, the other elephantnose fish can sense its pulses and can interpret how aggressive the first fish is. Female elephantnose fish generate a slightly different electrical field than males, which allows males and females to find each other to spawn.

You may be thinking about all this and wondering how the elephantnose fish can sense the tiny bioelectric charges of its tiny prey over its own electric field. Its electric field is much stronger than that of a teensy worm hiding in the mud, after all. It would be like trying to hear a bird chirping outside through a closed window while someone is playing music really loudly in the room you’re in. It turns out that the elephantnose fish is able to filter out its own electrical field so it can sense other things—but at the same time it’s still able to navigate using its electrical field.

The elephantnose fish needs a large brain to interpret all these complicated bioelectrical signals, and it has a brain to body size ratio equivalent to birds and possibly equivalent to primates. It’s not a social fish, and intelligence seems to develop from complex social interactions, although the fish is considered pretty intelligent. I mean, generally fish are not masterminds, so it’s not hard to be considered an intelligent fish, but the elephantnose fish has the brainpower to pull it off.

The elephantnose fish lives along the bottom of rivers and ponds, usually murky ones, and is mostly nocturnal. For a long time researchers thought it probably couldn’t see very well. It turns out, though, that it sees extremely well. Its retina is made up of cup-shaped cells that act like tiny mirrors, reflecting light and concentrating it so it can see better even in low light.

The elephantnose fish is a popular pet, but it is hard to keep. You have to really know what you’re doing and have a really big aquarium that’s set up just right. The males are aggressive toward each other and while the fish isn’t threatened in the wild, from what I could find out it has never bred in captivity.

Speaking of breeding in captivity, our other animal this week isn’t a fish but a reptile. It’s called the Burmese star tortoise and unlike the elephantnose fish, it’s critically threatened in the wild. It also doesn’t have a Schauzenorgan and instead just has a short little snub nose and lives on land in dry forests in Myanmar. It’s basically the opposite of the elephantnose fish.

It gets the name star tortoise because of its pretty shell markings that look sort of like stars. It can grow up to a foot long, or 30 cm, and eats grass, fruit, and other plant material, but will also eat mushrooms, insects, and snails. It has a steeply domed carapace, the proper name for its shell, with big bumps on it. It lives in central Myanmar in south Asia, but by the late 1990s it was almost extinct in the wild. The tortoise was eaten by locals, but mostly it was captured and sold as a pet or as a medicine ingredient even though it’s a tortoise, not a medicine. This was despite the tortoise being a protected species in the country.

Conservationists realized they had to act fast before this lovely tortoise went extinct. In 2004, authorities caught smugglers with 175 of the tortoises, so Myanmar’s conservation group created tortoise breeding facilities within three of the country’s wildlife sanctuaries. They consulted zoo veterinarians and tortoise experts from all over the world to make sure the rescued tortoises were as happy and healthy as possible. The first captive-bred Burmese star tortoise babies had only been hatched the year before, since it’s hard to breed in captivity.

Each sanctuary has guards that protect it from anyone who wants to sneak in and steal the animals to sell, and 150 of the tortoises have little radio trackers attached to their shells so conservationists can keep an eye on exactly where they are. They go out and check on the tagged tortoises every other week.

Since 2004, over 16,000 Burmese star tortoises have hatched in captivity and about a thousand have been returned to the wild. They’d release more into the wild, but the conservationists are worried that poachers would collect them to sell. The country of Myanmar is in a long-running civil war, unfortunately, and that makes it hard for the people living there to concentrate on conservation. Their main goal is just to stay safe. Hopefully things will get better soon for the people of Myanmar, and when they do, the tortoises will be waiting.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 222: Two Dangerous Birds of New Guinea

This week let’s learn about a couple of dangerous birds of New Guinea! They’re not what you might think.

Join our mailing list!

Further Reading/Watching:

How Dangerous Are Cassowaries, Really?

Inside the Cassowary’s Casque

Breakfast Club Ep. 34: Jack Dumbacher on Poisonous Birds (a long video but a really great deep dive into the pitohui)

The mighty cassowary with a mighty casque on its head, looking like a modern dinosaur, which it is:

A cassowary and babies:

A hooded pitohui, looking surprised to learn it’s toxic:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s time to revisit New Guinea and its weird and amazing birds! This week we’re going to look at two dangerous birds of New Guinea. Thanks again to M Is for Awesome for the suggestion.

Lots of birds are pretty or cute, and that’s great. But some birds…are dangerous. For instance, the cassowary. There are three species alive today, all of which live in New Guinea along with some other nearby islands. The southern cassowary lives in northeastern Australia too.

It’s a big, shy, flightless bird that lives deep in the rainforest. The biggest species is the southern cassowary, which can grow up to six and a half feet tall, or 2 meters. Its wings are small but it can run extremely fast, up to 30 mph, or 50 km/h. It can also jump and even swim extremely well. This is surprising not just because it’s such a big bird but because it looks ungainly. It’s shaped sort of like its relation, the emu, although its neck is shorter, with a big chunky body, long strong legs, and a little head in comparison. Females are larger than males on average with more brightly colored necks.

The cassowary’s body is covered with black feathers while the legs are bare, as is the neck and head. The neck is bright blue in females, paler blue in males, with red wattles that hang down as decoration. The face is a lighter blue with a black bill. It has spine-like feathers that grow from its small wings, which appear to be for decoration too, or at least the cassowary doesn’t seem to use those spiny feathers for anything. But the most unusual thing about the cassowary is the casque on its head.

The casque is a sort of plate that grows on the top of the bird’s head. Different species of cassowary have different shaped casques, and there’s some variation in size and shape of casques from individual to individual. The dwarf cassowary is the smallest, naturally, and has a relatively low casque. The northern cassowary has a larger, taller casque and the southern cassowary has the largest, tallest casque, shaped sort of like your hand if you keep it flat with all your fingers together, only instead of flat it’s sticking up from the top of the bird’s head. Looking at a cassowary is like looking at a dinosaur with a beak.

The casque consists of a bony core made up of two layers around an open space, and it’s covered with a keratin sheath. This is similar in structure to the kind of horns many hoofed animals have, like cattle and sheep, but there are plenty of differences. The sheath isn’t as hard as the keratin sheath on a mammal’s horn, for one thing. It’s actually a little bit leathery. It also contains a pocket inside the skull beneath the casque that’s full of delicate tissue made up mostly of tiny blood vessels.

No one except the cassowary knows for sure what the casque is for. Over the years, researchers have suggested it might be used as a weapon, it might act as a shield to keep falling fruit from injuring its head when it’s under a fruit tree, it might knock the casque against a tree to make fruit fall, it might use it to dig with, it might use the empty space inside as a resonant chamber to make noise with, or it might use the empty space inside to help it hear faint sounds.

Most likely, the casque is primarily for display. Since the cassowary does communicate with low-frequency booming sounds to attract mates, it might also help with resonance or amplification of its calls.

The cassowary mostly eats fruit, which it swallows whole, even large fruit like apples. This is good for the plants, since it poops out seeds which are then ready to sprout in their own little pile of fresh fertilizer. It will also eat flowers and other plant material, but if it can catch a frog or mouse, or other small animal, including insects and snails, it will eat them too. It even sometimes eats carrion.

A female’s territory overlaps that of several males, and she seems to form a bond with all of them. In breeding season she makes deep, booming calls, which a male answers with a running dance. The female often chases the male into water and follows him in, where he then chases her out of the water before they mate. Then the male builds a nest on the ground, basically just a pile of grass and leaves, and the female lays her eggs in the nest. The male takes care of the eggs and the chicks when they hatch. Meanwhile, the female leaves and finds one of the other males in her territory. She will usually have a clutch of eggs with each male.

So, why is the cassowary considered dangerous? Because of its big, strong legs and big feet with claws. Its first claw is especially long and sharp. A cassowary will kick if it feels threatened or if it’s protecting its eggs or chicks, and many people consider it the most dangerous bird in the world.

In reality, though, while many people have been injured by cassowaries, usually ones kept in captivity for their feathers, only a few have died. One 16yo boy died in 1926 when a cassowary kicked him in the neck, but that’s the most recent death known. Dogs are in more danger.

These days, a lot of people are chased or injured by cassowaries demanding food. This happens when a cassowary is fed by tourists or even locals who think they’re cute and maybe want to take selfies with them. The cassowaries lose their fear of humans and get aggressive. Don’t feed wild animals and don’t get too close to them. If you must take a selfie with a wild animal, the quokka is a lot less dangerous.

Next, let’s talk about the hooded pitohui. It lives in forests throughout much of New Guinea and eats seeds, insects and other invertebrates, and fruit. It’s related to orioles and looks very similar, with a dark orange body and black wings, head, and tail. Its eyes are red. It’s a social songbird that lives in family groups where everyone works to help raise the babies.

Obviously, it’s not kicking anyone to death. Instead, it’s toxic.

The people who live in New Guinea know all about its toxicity, of course. They know not to bother killing the pitohui because it tastes nasty and will make you sick. They mentioned this to European naturalists as long ago as 1895. But ha ha ha, birds aren’t toxic, obviously that’s just superstition by “primitive natives,” right? So it wasn’t until 1989 that a grad student studying birds of paradise made a surprising discovery.

Jack Dumbacher was trying to net some birds of paradise to study but kept catching pitohuis in his nets. He would untangle the birds and let them fly away, but naturally they were upset and one scratched him. He was in a hurry so he just licked the cuts clean. His tongue started to tingle, then burn, and then it went numb. Uh oh.

Fortunately the effects didn’t last long, but when he mentioned it to another researcher who turned out to have had the same thing happen, they realized something weird was going on. Dumbacher asked some of the local people what the cause might be, and they all said, “Yeah, don’t lick the pitihui bird.”

Dumbacher did, though, because sometimes scientists have to lick things. The next time his nets caught a pitihui, Dumbacher plucked one of its feathers and put it in his mouth. His mouth immediately started to burn.

Dumbacher was amazed to learn about a toxic bird, but it took a year for anyone else to take an interest, specifically Dr. John W. Daly, an expert in poison dart frogs in Central and South America. Back in the 1960s while he was studying the frogs, in order to determine which ones were actually toxic and which ones weren’t, he frequently poked a frog and licked his finger, so Daly completely understood Dumbacher putting a feather in his mouth.

Maybe don’t put random stuff in your mouth. Both Dumbacher and Daly were lucky they didn’t die, because it turns out that poison dart frogs and pitihuis both contain one of the deadliest neurotoxins in the world, called batrachotoxin.

A chemical analysis determined that both animals excrete the exact same toxin. If you remember episode 204, where we talked about poison dart frogs, you’ll remember that in captivity, poison dart frogs lose their toxicity. Daly was the one who figured this out, but he couldn’t figure out why except that he was pretty sure they absorbed the toxins from something they were eating in the wild. He thought the same might be true for the pitihui.

Dumbacher agreed, and after he achieved his doctorate he started making expeditions to New Guinea to try to find out what. Both he and Daly thought it was probably an insect. But there are a lot of insects in Papua New Guinea and he couldn’t stay there and test insects for toxins all the time. He came and went as often as he could, and to make his trips easier he left his equipment in a village rather than hauling it back and forth with him.

What he didn’t know is that one villager, named Avit Wako, had gotten interested in the project. When Dumbacher was gone, he continued the experiments. In 1995 Dumbacher sent a student intern to the village, since he didn’t have time to go himself, and Avit Wako said, “Hey, good to see you! I solved your problem. The toxin comes from this particular kind of beetle.” He was right, too. The toxin comes from beetles in the genus Choresine.

We still aren’t sure what beetle or other insect supplies toxins to poison dart frogs. Maybe they should get Avit Wako on the case.

The hooded pitohui, along with its close relation the variable pitohui, is the most toxic, but there are other species and many of them are toxic too. The pitohuis are separated into three different families that aren’t as closely related as originally thought, although they all look pretty similar.

But the pitohui isn’t the only toxic bird in New Guinea. The blue-capped ifrit is another little songbird that lives only in the rainforests of New Guinea. It’s brownish-yellow with a yellow belly and black and white markings on the head. It isn’t closely related to the pitohui but its skin and feathers contain the same toxin that the pitohui’s does, which researchers think they also get from the same beetle.

There’s also a bird called the rufous shrikethrush that lives in New Guinea and Australia. It’s a little gray-brown bird with a reddish-brown breast, and it mostly eats insects. It is actually related to the pitohui, and like the pitohui its skin and feathers are toxic—but only in the subspecies that live in New Guinea. Australian shrikethrushes aren’t toxic because the toxic beetles aren’t found in Australia.

New Guinea undoubtedly has bird species that haven’t been described scientifically yet. Who knows how many of them may also be toxic? Just to be on the safe side, don’t lick any of them.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 220: Panda Mysteries, Solved!

This week let’s learn about a mystery panda and a few small panda mysteries!

Join our mailing list!

Further Reading:

Mystery of the brown giant panda deepens

The Qinling panda is not like other pandas:

The giant panda is subtly different from the Qinling panda. Can you spot the difference?

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

I usually like to shake things up from week to week, but April has turned into mammal month. We’ve got another interesting mammal this week, a panda that until recently was a mystery. But first! A quick correction from last week. Pranav emailed to let me know that I got infrasound and ultrasound mixed up. Tarsiers communicate and hear in ultrasound. Infrasound is below human hearing while ultrasound is above.

We’ve talked about the giant panda before in episodes 42 and 109. Pretty much everyone is familiar with the panda because it looks so cuddly. It’s a bear, but unlike every other bear it eats plants. Specifically, it eats bamboo, although it will also sometimes eat bird eggs and small animals. It’s mostly white but its ears are black, it has black patches around and just under its eyes, and its legs are black. It also has a strip of black around its body at about its shoulders.

But what if I told you there was another kind of panda that wasn’t black and white? I’m not talking about the red panda, which is not actually very closely related to bears. I’m talking about the Qinling panda.

Qinling refers to the Qinling Mountains in central China, which is where the pandas live. There aren’t many of them, although to be fair there aren’t many pandas in the wild at all. Estimates vary from around 200 to 300 Qinling pandas in the wild. They live in two big nature reserves, and there’s only one in captivity.

The reason you’ve probably never heard of the Qinling panda is because until 2005, no one realized it wasn’t a regular panda with slightly different color fur. In 2005 a genetic study determined that the Qinling panda has been isolated from other pandas for at least 12,000 years and is different enough that it’s considered a subspecies of panda.

The Qinling panda is sometimes called the brown panda or sepia panda, because instead of being black and white, it’s brown and brownish-white. Where an ordinary panda has white fur, the Qinling panda has light tan or light brown fur. Where an ordinary panda has black fur, the Qinling panda has brown fur. It’s not dark brownish-black, just a medium brown. It also has a smaller, rounder head than other pandas.

In 1989, before anyone realized the Qinling panda was a different subspecies, a female was captured as a mate for a captive giant panda. The pair had a baby who looked like an ordinary black and white panda cub, at least for the first four months of his life. At four months old his fur started to look more and more brown, until he was a brown and pale brown panda instead of a black and white panda. Unfortunately, the baby didn’t survive to grow up, and the mother panda died in 2000.

The Qinling panda lives in high elevations and eats bamboo, just like other pandas. Because there are so few of them, and because they’re hard to keep in captivity and hard to find in the wild, we still don’t know a whole lot about them. We do know that the Qinling panda tends to have more tooth problems than regular pandas, sometimes losing its teeth or just fracturing them. This may be due to inbreeding, but it may be genetic.

The Qinling panda’s genetic profile indicates that it has more traits in common with the ancestor it shares with giant pandas than the giant panda does. In the time that the populations have been separate, the giant panda has evolved more quickly than the Qinling panda. The giant panda’s teeth may be better adapted to its diet than the Qinling panda’s teeth are.

Now that I’ve told you that the Qinling panda has a different color coat than giant pandas, let me back that up a little. Not all Qinling pandas have brown fur. Most are black and white, although they may have a brown tinge to the coat. The brown pandas were first noticed in the 1960s and researchers worry that it’s a sign of inbreeding. Then again, the genetic studies done on Qinling pandas show a healthy amount of genetic diversity with little sign of inbreeding. The brown coloration might be due to other factors.

While we’re talking about panda coloration, why does the giant panda have such unusual markings? Even animals that are black and white aren’t patterned like the panda. I’m happy to report that the researcher who led the study that determined that zebras have black and white stripes to confuse biting flies, which we talked about in episode 149, seems to have solved the panda markings mystery too.

Because the panda’s diet is so low in calories and nutrition, it can never build up the kind of fat stores that other bears do. As a result, it doesn’t have fat reserves that would allow it to go dormant during the winter and sleep most of the time. The white fur helps hide it in snow during the winter. Adult giant pandas don’t have to worry too much about predators because they’re so big, up to a little more than six feet long, or 2 meters, but young pandas are vulnerable to snow leopards, eagles, black bears, and other predators. The black markings help break up the body’s pattern and help hide it in the bamboo forests where there’s lots of dappled shade.

But the giant panda’s black ears may actually help deter predators. Many animals signal aggression with their ears, and because the panda’s ears are large and black against its white-furred head, potential predators may perceive the panda as being aggressive.

All pandas have to travel sometimes long distances to find enough food to eat, and they need more than one species of bamboo. Some bamboo species contain more nutrients than others, while different species of bamboo sprout, flower, and die back at different times of the year. Female pandas will also sometimes wander widely to find a mate, although she will often return to her home territory to give birth.

Most animals are active at one of three sections of the day. Diurnal animals are mostly active during daytime, nocturnal animals are mostly active at night, and crepuscular animals are mostly active at dawn and dusk. The giant panda, however, including the Qinling panda, is mostly active in the morning, in the afternoon, and at midnight. We don’t even have a term for that pattern because it appears to be unique to the panda. But you know what? If that makes the panda happy, that’s fine. The panda can get up at midnight to snack on bamboo all it wants.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way. Oh, and we have a mailing list sign-up now too!

Thanks for listening!

Episode 219: The Strange and Mysterious Tarsier

Thanks to Phoebe for suggesting the tarsier, this week’s strange and interesting primate!

Further Reading:

Decoding of tarsier genome reveals ties to humans

Long-lost ‘Furby-like’ Primate Discovered in Indonesia

Tarsiers look like weird alien babies:

A tarsier nomming on a lizard:

A tarsier nomming on an insect:

The pygmy tarsier and someone’s thumb:

There’s probably not much going on in that little brain:

Show Transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re looking at a weird and amazing little primate, but it’s not a monkey or ape. It’s the tarsier, with thanks to Phoebe who suggested it. It’s pronounced tarsiAY or tarsiER and both are correct.

The tarsier is such a little mess that until relatively recently scientists weren’t even completely certain it was a primate. A 2016 genetic study determined for sure that it is indeed a primate even though it differs in many ways from all other primates alive. For instance, it’s a carnivore. Most primates are herbivores and some are omnivores, including humans and chimpanzees, but only the tarsier is an obligate carnivore. That means it has to eat meat and only meat, whether it’s invertebrates, birds, reptiles, or small mammals like rodents.

Scientists divide primates into two groups informally, into wet-noses and dry-noses. Wet-nose doesn’t refer to a nose that’s runny but to a nose that stays moist, like a dog’s nose. This splits along the same lines as simians and prosimians, another way to group primates. Humans and other apes, along with monkeys, are simians, and also dry-noses. If you’re not sure if that’s accurate, just touch the end of your nose. Make sure you’re not standing in the rain or just got out of the bathtub, though. All other primates are wet-noses, and also prosimians, except for the tarsier. The tarsier is sort of in between. It’s grouped with the wet-nose primates, but it turns out to be more closely related to the dry-nose primates than the wet-noses. Also, its nose is actually dry.

One interesting difference between prosimians and simians concerns vitamin C. Vitamin C is found in a lot of foods, but especially in fruit and vegetables. If you don’t have any vitamin C in your diet, you will eventually die of scurvy like an old pirate, so make sure to eat plenty of fruit and vegetables. But most animals don’t need to eat foods containing vitamin C because their bodies already produce the vitamin C they need. Humans, apes, and monkeys have to worry about scurvy but prosimians don’t. But the tarsier does need vitamin C even though it’s a prosimian. A lot of researchers think the tarsier should be grouped with the simians, not prosimians.

The tarsier currently lives only in southeast Asia, mostly on forested islands, although tarsier fossils have been found throughout Asia, Europe, and North America. Genetic studies also indicate it probably started evolving separately from other primates around 55 million years ago in what is now China.

As it happens, we have a fossil that appears to be an early ancestor of the tarsier. Archicebus achilles was discovered in 2003 and studied for an entire decade before it was described in 2013, and it lived about 55 million years ago in what is now central China. It looks a lot like a tiny tarsier, but with smaller eyes that suggest it was active during the day. Its feet were shaped like a monkey’s, though, not like a tarsier’s feet. It probably only weighed about an ounce, or 28 grams. That’s about the same weight as a pencil. It had sharp little teeth and probably ate insects. So far the 2003 specimen is the only one found, but it’s remarkably complete so researchers have been able to learn a lot about it. If I’d been one of the scientists studying it, there is no way I could have waited ten whole years to tell people about it. I’d have studied it for like six months and then thought, “Okay, good enough, HEY EVERYONE LET ME TELL YOU ABOUT THIS COOL ANIMAL.”

The tarsier is nocturnal and has enormous eyes to help it see better in the dark. Its eyes are so big and round, and frankly the tarsier is not the brainiest animal, that its eyes are actually bigger than its brain. The tarsier also has mouse-like ears, long fingers and toes with sucker-like discs at the end to help it grip branches, and an extremely long tail that’s scaly on the underside. It spends almost its whole life in trees, where it climbs and jumps from branch to branch. When it climbs up a tree, it presses its long tail against the trunk to help it balance.

It’s not a big animal, though. A typical tarsier measures about six inches long, or 15 cm, from the top of its little round head to the bottom of its bottom, not counting its tail. Its tail can be almost a foot long, or 25 cm, though, and its hind legs are also extremely long, about as long as the tail. Its body is rounded with short plush fur, usually brown, gray, or dark gold in color.

With its big eyes and chonky body, if you wrapped up a tarsier in a little robe so you can’t see how small its ears are and how long its legs and tail and fingers are, it would kind of look like a miniature baby Yoda guy from that Mandalorian TV show. Someone please do that. Also, it kind of looks like a cute and furry Gollum from the Lord of the Rings movies.

Unlike other primates, the tarsier can turn its head 180 degrees in both directions. Basically it can turn its head like an owl. This is helpful because its eyes are so big it can’t move them. It can only look straight ahead, so it needs to be able to move its head all around instead. This is actually the same for the owl, too.

The tarsier mostly eats insects, but it will eat anything it can catch, including venomous snakes. It doesn’t just eat the meat, though. It eats just about everything, including bones. It has a wide mouth and strong jaws and teeth, and it’s so agile that it’s been observed to jump up and catch a bird as it flies past. Current speculation is that the tarsier gets enough vitamin C from the insects it eats that it doesn’t need to eat fruit, but no one knows for sure yet. Some species of bat can’t synthesize vitamin C in the body and have to get it from their diet, which is made up of insects.

We talked about the tarsier a little in episode 43, about the Chinese ink monkey, and also way back in episode eight, the strange recordings episode, because the tarsier can communicate in ultrasound [not infrasound]—sounds too high for humans to hear. It has incredibly acute hearing and often hunts by sound alone. Researchers speculate that not only can the tarsier avoid predators by making sounds higher than they can hear, it can also hear many insects that also communicate in ultrasound. As an example of how incredibly high-pitched their voices are, the highest sounds humans can hear are measured at 20 kilohertz. The tarsier can make sounds around 70 kh and can hear sounds up to 91 kh.

The tarsier also makes sounds humans can hear. Here’s some audio of a spectral tarsier from Indonesia:

[tarsier sound]

Some species of tarsier are social, some are more solitary. All are shy, though, and they don’t do well in captivity. Unfortunately, because the tarsier is so small and cute and weird-looking, some people want to keep them as pets even though they almost always die quite soon. As a result, not only is the tarsier threatened by habitat loss, it’s also threatened by being captured for the illegal pet trade. Fortunately, conservation efforts are underway to protect the tarsier within large tracts of its natural habitat, which is also beneficial for other animals and plants.

The smallest species is the pygmy tarsier, which is only found in central Sulawesi in Indonesia, in high elevations. It’s four inches long, or 10.5 cm, from head to butt. You measure tarsiers like you measure frogs. It’s basically the size of a mouse but with a really long tail and long legs and big huge round eyes and teeny ears and a taste for the flesh of mortals. Or, rather, insects, since that’s mostly what it eats.

For almost a century people thought the pygmy tarsier was extinct. No one had seen one since 1921. Then in 2000, scientists trapping rats in Indonesia caught a pygmy tarsier. Imagine their surprise! Also, they accidentally killed it so I bet they felt horrible but also elated. It wasn’t until 2008 that some live pygmy tarsiers were spotted by a team of scientists who went looking specifically for them. This wasn’t easy since tarsiers are nocturnal, so they had to hunt for them at night, and because the wet, foggy mountains where the pygmy tarsier lives are really hard for humans to navigate safely. It took the team two months, but they managed to capture three of the tarsiers long enough to put little radio collars on them to track their movements.

One of the things Phoebe wanted to know about tarsiers is if there are any cryptids or mysteries associated with them. You’d think there would be, if only because the tarsier is kind of a creepy-cute animal, but I only managed to find one kinda-sorta tarsier-related cryptid.

According to a 1932 book called Myths and Legends of the Australian Aboriginals, a little red goblin creature lives in trees in some parts of Australia, especially the wild fig tree. It’s called the yara-ma-yha-who and it looks sort of like a frog but sort of like a monitor lizard. It’s bright red and stands around four feet tall, or 1.2 meters, with skinny arms and legs. The ends of its fingers and toes are cup-shaped suckers. Its head is large with a wide frog mouth and no teeth.

When a person comes along, the yara-ma-yha-who drops down from its tree and grabs them by the arm. It uses the suckers on its fingers and toes to drain blood from their arm, then swallows the person whole. Then later it horks them back up, but they’re smaller than before and their skin is starting to turn red. Eventually the person turns into a yara-ma-yha-who, unless they manage to escape in time.

Some cryptozoologists speculate that the yara-ma-yha-who may be based on the tarsier. The tarsier has never lived in Australia, but it does live in relatively nearby islands. Most tarsier species do have toe pads that help them cling to branches, but frogs also have toe pads and frogs are found in Australia. Likewise, by no stretch of the imagination is the tarsier bright red, four feet tall, toothless, or active in the daytime. It’s more likely the legend of the yara-ma-yha-who is inspired by frogs, snakes, monitor lizards, and other Australian animals, not the tarsier. But just to be on the safe side, if you live in Australia you might want to walk around wild fig trees instead of under them.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!